Rapport d’activités
2016-2018

Directeur : Jérémy PRUVOST
Directeurs-adjoints : Laurence Le Coq, Michel Havet

Janvier 2019
Table des matières

PRESENTATION DE L'UNITE... 5

PRESENTATION GENERALE .. 5
STRUCTURATION ET POLITIQUE SCIENTIFIQUE .. 5
 Structuration scientifique de l'UMR ... 5
 Organigramme de l'UMR .. 11
 Gouvernance de l'UMR .. 11
 Equipe administrative et technique ... 12
OBJECTIFS ET DEMANDES ASSOCIEES POUR LA PERIODE 2018-19 14
 Rappel de la demande en cours auprès des tutelles (demande DIALOG 2018-19) ... 15

AXE « PROCEDES POUR LES BIO-RESSOURCES » ... 18

PRESENTATION GENERALE ... 18
PERSPECTIVE GENERALE .. 19

EQUIPE BAM.. 21

« BIOPROCEDES APPLIQUEES AUX MICRO-ALGUES » 21

PRESENTATION DE L'EQUIPE ... 21
 Chercheurs et enseignants-chercheurs permanents 21
 Personnels techniques permanents .. 21
 Personnels techniques non permanents .. 22
 Doctorants .. 22
 Post-doctorants, ATER et chercheurs seniors accueillis 25

POLITIQUE SCIENTIFIQUE ... 26
 Missions et objectifs scientifiques ... 26
 Orientations et choix stratégiques ... 27
 Résumé des principaux objectifs et cibles associés au projet scientifique de l'équipe BAM : ... 30

BILAN GENERAL D'ACTIVITE ET FAITS MARQUANTS DE LA PERIODE 2016-2018 ... 31
 Bilan général d'activité de l'équipe .. 31
 Faits marquants de la période 2016-2018 .. 31

ANALYSE SWOT .. 35

PERSPECTIVES DE L'EQUIPE ... 36

PRODUITS ET ACTIVITES DE RECHERCHE ... 37
 Journaux / Revues ... 37
 Ouvrages ... 42
 Colloques / congrés, séminaires de recherche .. 43
 Brevets, licences et déclarations d'invention .. 52
 Contrats de recherche financés par des institutions publiques ou caritatives 52
 Interactions avec les acteurs socio-économiques .. 54
 Organisation de colloques / congrés ... 55
 Activités éditoriales .. 55
 Indices de reconnaissance .. 55
 Produits destinés au grand public ... 57
 Communication institutionnelle ... 57
 Thèses soutenues ... 58
 HDR soutenues ... 60

EQUIPE MAPS² ... 61

« MATRICES/ ALIMENTS/ PROCEDES/ PROPRIETES/ STRUCTURE – SENSORIEL » .. 61

PRESENTATION DE L'EQUIPE ... 61
 Chercheurs et enseignants-chercheurs permanents 61
 Chercheurs et enseignants-chercheurs non permanents 62
 Personnel technique permanent* .. 62
 Personnels techniques non permanents (MAPS²) .. 62
 Doctorants .. 62
 Post-doctorants et chercheurs seniors accueillis ... 64

POLITIQUE SCIENTIFIQUE ... 66
<table>
<thead>
<tr>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missions et objectifs scientifiques</td>
<td>66</td>
</tr>
<tr>
<td>Orientations scientifiques et choix stratégiques</td>
<td>66</td>
</tr>
<tr>
<td>Analyse SWOT</td>
<td>70</td>
</tr>
<tr>
<td>Bilan général d'activité</td>
<td>70</td>
</tr>
<tr>
<td>Faits marquants sur la période 2016-2018</td>
<td>72</td>
</tr>
<tr>
<td>Perspectives de l'équipe</td>
<td>73</td>
</tr>
<tr>
<td>Produits et activités de recherche</td>
<td>74</td>
</tr>
<tr>
<td>Journaux / Revues</td>
<td>74</td>
</tr>
<tr>
<td>Autres articles (articles publiés dans des revues professionnelles ou techniques, etc.)</td>
<td>79</td>
</tr>
<tr>
<td>Chapitres d'ouvrages</td>
<td>80</td>
</tr>
<tr>
<td>Communications avec actes</td>
<td>81</td>
</tr>
<tr>
<td>Communications sans actes</td>
<td>81</td>
</tr>
<tr>
<td>Communications par affiches</td>
<td>87</td>
</tr>
<tr>
<td>Brevets, licences et déclarations d'invention</td>
<td>93</td>
</tr>
<tr>
<td>Contrats de recherche financés par des institutions publiques ou caritatives</td>
<td>93</td>
</tr>
<tr>
<td>Interactions avec les acteurs socio-économiques</td>
<td>95</td>
</tr>
<tr>
<td>Organisation de colloques / congrès</td>
<td>96</td>
</tr>
<tr>
<td>Activités éditoriales</td>
<td>97</td>
</tr>
<tr>
<td>Indices de reconnaissance</td>
<td>97</td>
</tr>
<tr>
<td>Produits destinés au grand public</td>
<td>98</td>
</tr>
<tr>
<td>Thèses soutenues</td>
<td>99</td>
</tr>
<tr>
<td>HDR soutenues</td>
<td>100</td>
</tr>
<tr>
<td>AXE « ECOTECHNOLOGIES »</td>
<td>102</td>
</tr>
<tr>
<td>Présentation générale</td>
<td>102</td>
</tr>
<tr>
<td>Perspective générale</td>
<td>102</td>
</tr>
<tr>
<td>Equipe Team</td>
<td>103</td>
</tr>
<tr>
<td>« TRAITEMENT EAU AIR METROLOGIE »</td>
<td>103</td>
</tr>
<tr>
<td>Présentation de l'équipe</td>
<td>103</td>
</tr>
<tr>
<td>Chercheurs et enseignants-chercheurs permanents</td>
<td>103</td>
</tr>
<tr>
<td>Personnel technique</td>
<td>103</td>
</tr>
<tr>
<td>Personnels techniques non permanents</td>
<td>104</td>
</tr>
<tr>
<td>Doctorants</td>
<td>104</td>
</tr>
<tr>
<td>Post-doctorants et chercheurs seniors accueillis</td>
<td>106</td>
</tr>
<tr>
<td>Politique scientifique</td>
<td>107</td>
</tr>
<tr>
<td>Missions et objectifs scientifiques</td>
<td>107</td>
</tr>
<tr>
<td>Orientations et choix stratégiques</td>
<td>107</td>
</tr>
<tr>
<td>Bilan général d’activité et faits marquants de la période 2016-2018</td>
<td>112</td>
</tr>
<tr>
<td>Bilan général d’activité de l’équipe</td>
<td>112</td>
</tr>
<tr>
<td>Faits marquants de la période</td>
<td>113</td>
</tr>
<tr>
<td>Analyse SWOT</td>
<td>114</td>
</tr>
<tr>
<td>Perspectives de l’équipe</td>
<td>115</td>
</tr>
<tr>
<td>Produits et activités de recherche</td>
<td>117</td>
</tr>
<tr>
<td>Journaux / Revues</td>
<td>117</td>
</tr>
<tr>
<td>Ouvrages</td>
<td>121</td>
</tr>
<tr>
<td>Colloques / congrés, séminaires de recherche</td>
<td>121</td>
</tr>
<tr>
<td>Brevets, licences et déclarations d’invention</td>
<td>126</td>
</tr>
<tr>
<td>Contrats de recherche financés par des institutions publiques ou caritatives</td>
<td>126</td>
</tr>
<tr>
<td>Interactions avec les acteurs socio-économiques</td>
<td>128</td>
</tr>
<tr>
<td>Organisation de colloques / congrés</td>
<td>128</td>
</tr>
<tr>
<td>Activités éditoriales</td>
<td>129</td>
</tr>
<tr>
<td>Indices de reconnaissance</td>
<td>129</td>
</tr>
<tr>
<td>Thèses soutenues</td>
<td>129</td>
</tr>
<tr>
<td>HDR soutenues</td>
<td>131</td>
</tr>
<tr>
<td>Equipe OSE</td>
<td>132</td>
</tr>
<tr>
<td>« OPTIMISATION – SYSTÈME – ENERGIE »</td>
<td>132</td>
</tr>
</tbody>
</table>
Présentation de l’unité

Présentation générale

Le GEPEA, Laboratoire de « Génie des procédés, Environnement et Agroalimentaire » est une unité mixte de recherche (UMR 6144) affiliée à 4 tutelles : CNRS, Institut Mines Télécom Atlantique – site de Nantes, ONIRIS et Université de Nantes.

L’UMR est implantée sur 5 sites sur l’arc atlantique Saint-Nazaire / Nantes / La Roche-sur-Yon. À Saint-Nazaire, elle occupe 1600 m² au CRTT et 2500 m² pour la plateforme R&D AlgoSolis (UMS 3722 CNRS-Université de Nantes). À Nantes, elle occupe 2665 m², dont 600 m² pour la plateforme PREVER et 230 m² pour la plateforme SAFEAIR, à l’Institut Mines Télécom, site de Nantes, 1700 m² à ONIRIS et 500 m² à l’IUT de Nantes. À la Roche-sur-Yon, elle occupe 200 m² au sein de l’IUT. Depuis sa création, les membres du GEPEA ont montré leur capacité à travailler sur des sites distants géographiquement (3 implantations à Nantes, une à Saint-Nazaire et une à La Roche-sur-Yon). Le partage d’un objectif commun, malgré un éloignement spatial, est devenu une culture de laboratoire.

Jérémy PRUVOST est actuellement le directeur de l’UMR, depuis le 1er décembre 2018 et jusqu’au terme du mandat de l’unité pour le contrat quinquennal en cours. L’UMR a vu en 2018 un changement de direction du laboratoire, le précédent Directeur, Pascal JAOUEN, ayant dû mettre fin à son mandat pour raison de santé en Avril 2018. Suite à un nouveau processus d’élection, Jérémy PRUVOST assure à présent cette direction, avec la volonté de poursuivre le projet initié en Janvier 2017 par la direction précédente. Cette direction, initialement par intérim, a été officialisée par le CNRS et les trois autres tutelles en décembre 2018.

Structuration et politique scientifique

Structuration scientifique de l’UMR

Le laboratoire repose sur 5 équipes scientifiques, structurées en 2 axes :

(i) Axe Procédés pour les BIORESSOURCES
 - Equipe BAM : Bioprocédés Appliqués aux Microalgues
 - Equipe MAPS2 : Matrices & Aliments : Procédés /Propriétés / Structure – Sensoriel

(ii) Axe ÉCOTECHNOLOGIES
 - Equipe TEAM : Traitement Eau Air Métrologie
 - Equipe OSE : Optimisation – Système – Energie
 - Equipe VERTE : Valorisation Energie/matière des Résidus et Traitement des Emissions

La structuration en deux axes répond à la stratégie globale de l’UMR, visant un positionnement sur son expertise reconnue dans les domaines des bioressources et des écotechnologies. Cela permet également une animation transversale des équipes au sein d’un même axe, pour créer des synergies comme par exemple la valorisation alimentaire de microalgues (axe Bioressources – Equipes MAPS2 et BAM) ou la valorisation combinée matière-énergie d’effluents ou déchets (axe

Axe « Procédés pour les Bioressources »

L’axe Procédés pour les Bioressources regroupe les équipes MAPS² et BAM avec comme interface des problématiques de transformation de matières premières biosourcées, soit pour élaborer des matrices complexes, soit pour produire des composés actifs de bioressources. Chaque équipe travaille à la valorisation de matrices distinctes, à savoir les matrices traditionnelles végétales et animales nouvelles (insectes) pour MAPS², et les microalgues et cyanobactéries pour BAM.

Un certain nombre de connexions et complémentarités entre ces deux équipes existe, par exemple sur des fonctionnalités ou activités biologiques originales présentes dans chacune des matrices, ou des propriétés tensioactives de constituants mineurs qui peuvent poser problème lors de leur extraction, ou au contraire devenir un avantage par utilisation comme émulsifiant sur matrices alimentaires par exemple. D’autres problématiques touchant aux molécules volatiles, ou à des sourcings alternatifs en protéines et polysaccharides peuvent être développées. Le développement de procédés de transformation en produits d’usage, incluant les matériaux bio-sourcés, est également un enjeu commun. Le fil conducteur est au final une approche multi-échelle allant de la chimie des biopolymères et des interactions entre constituants, jusqu’au niveau macroscopique du développement et de l’optimisation du procédé de production et de transformation.

Interactions entre les équipes MAPS² et BAM

L’équipe MAPS² (Matrices et Aliments, Procédés, Propriétés, Structure, Sensoriel) est fortement pluridisciplinaire. Elle rassemble des chercheurs et ingénieurs d’ONIRIS, de l’Université de Nantes et du CNRS autour des **procédés de transformation des matières (bio)polymères pour deux grands champs d’applications, i) les aliments et ii) les matériaux.** L’approche de la physico-chimie des Procédés a pour objectif l’étude des interactions procédé-propriété lors de la structuration des matrices, conduisant aux propriétés d’usages recherchées, ou de leur déstructuration lors de leur consommation ou en fin de vie (perception sensorielle des aliments, recyclage de matériaux…). Nous travaillons notamment sur l’influence de la formulation (additifs, auxiliaires de technologie) et de sollicitations multiples lors des procédés (température, pression, cisaillement, perturbation électriques).
Trois grandes familles de procédés sont développées.

Les procédés thermiques et thermomécaniques :
- Cuisson de produits céréaliers et de matériaux élastomères
- Cristallisation sous perturbations électriques (champ électrique, microondes, magnétique)
- Pétrissage pression sous vide des pâtes céréalières
- Extrusion d’aliments et de matériaux thermoplastiques
- Injection-moulage de thermoplastiques et d’élastomères

Les procédés athermiques :
- Texturation des produits par hautes pressions isostatiques (7000 atm)
- Création d’interfaces (émulsions, mousses) sans émulsifiants par des procédés à cisaillement maîtrisé comme les mélangeurs statiques ou des microsystèmes
- Mise en forme de biopolymères par voie solvant (liquides ioniques, Deep Eutectic Solvents)

Les Procédés de déconstruction organoleptique :
- Bouche artificielle (effet de la mastication sur la libération d’arômes)
- Olfactométrie (couplage analyse sensorielle/analyse chimique)

L’équipe BAM (Bioprocéédés appliqués aux microalgues) s’intéresse à la valorisation des microalgues et des cyanobactéries pour différents secteurs industriels comme l’alimentation, la dépollution, la chimie verte, la santé et l’énergie. Les spécificités de cette bioressource (microorganismes photosynthétiques se développant en milieu aqueux) induisent un grand nombre de problématiques scientifiques propres au Génie des Bio-Procédés, et qui sont donc déployées au sein de l’équipe :
- maîtriser et optimiser la bioréaction photosynthétique,
- développer, optimiser et contrôler les procédés de production et de bioraffinage des microalgues,
- intégrer les opérations unitaires pour une mise en place d’une exploitation industrielle optimisée, notamment dans un contexte d’écologie industrielle.
Le Laboratoire GEPEA dispose aujourd'hui des compétences et des outils pour aborder ces problématiques par une recherche aux interfaces entre les notions fondamentales du Génie des Procédés (réacteurs, phénomènes de transferts, contrôle) et les disciplines issues des Sciences du Vivant (microbiologie, physiologie, génie métabolique). L'accent est mis sur (i) l'intégration, en travaillant de la souche à la molécule cible, ce qui implique de maîtriser la réaction biologique, la culture en photobioréacteurs dédiés, le bioraffinage de la biomasse récoltée et le recyclage des effluents et (ii) l'utilisation d'outils de pointe, comme la plateforme AlgoSolis UMS 3722 conçue pour répondre aux TRL intermédiaires de la mise en place d'une exploitation contrôlée, intensifiée et durable de la ressource microalgale à grande échelle.

Axe « Ecotechnologies »

Cet axe intègre les 3 équipes du Laboratoire GEPEA concernées par les écotechnologies. L'originalité de l'approche est de proposer une intégrée couvrant les aspects développements de procédés, l'optimisation énergétique, la réduction de l'impact sanitaire et environnemental, de même que la valorisation multiple matière-énergie de déchets et d'émissions industrielles.

L'axe Ecotechnologies repose sur une approche système, transverse, multi-disciplinaire et intégrée par domaine d'application.

L'axe comprend 3 équipes :
- Equipe TEAM : Traitement Eau Air Métrologie
- Equipe OSE: Optimisation – Système – Énergie
- Equipe VERTE: Valorisation Énergie/matière des Résidus et Traitement des Emissions

TEAM est une équipe pluridisciplinaire associant le génie des procédés, la mesure et le contrôle pour le traitement de l'air et de l'eau, milieux complexes et multi-composés. Cette association originale assure à TEAM un continuum procédé-mesure pour proposer des solutions de dépollution in situ et en continu afin de relever les défis de nos sociétés en termes d'impacts sur les milieux récepteurs et sur l'homme. Les travaux développés dans l'axe procédés portent sur les écoulements, la séparation avec transfert-réaction appliqués aux traitements de l'eau et de l'air. La démarche de l'équipe est d’apporter des réponses pertinentes aux problématiques rencontrées en procédant à l'optimisation, l'intensification, au couplage des procédés ou encore en l'intégration du suivi des performances via des capteurs et biocapteurs. L'axe métrologie associe biologie, microbiologie, physique et ingénierie pour la détection des pollutions au travers de méthodes non invasives. Il intègre l'ensemble de la stratégie de mesure de la cellule au biocapteur et à l'interprétation des données.
L’équipe OSE contribue à l’optimisation des procédés et systèmes, dans un objectif, non exclusif, d’en améliorer l’efficacité énergétique. Le développement d’outils de suivi et de contrôle est un moyen de répondre à cet objectif et de favoriser le développement de nouvelles technologies. La problématique scientifique relève des domaines de la thermique, de l’énergétique, des phénomènes de transfert, de l’automatique, et de la mécanique des fluides appliqués aux procédés thermiques et aux systèmes énergétiques en réseau. L’équipe développe alors des solutions et outils numériques pour la simulation, l’optimisation et le contrôle des procédés et systèmes. Son champ d’activité s’étend jusqu’au développement de capteurs et prototypes permettant la validation expérimentale des concepts et modèles. Souvent liées à des problématiques à différentes échelles, spatiales ou temporelles, les applications visées relèvent principalement des secteurs de l’agroalimentaire (Procédés électrothermiques (micro-ondes, chauffage ohmique, EHD,…)), des matériaux (Procédés de mise en œuvre des matériaux polymères, extrusion, injection, …), et de l’énergie (Systèmes énergétiques en réseau, réseaux de chaleur).

L’équipe VERTE rassemble des compétences multidisciplinaires en génie des procédés, énergétique et science des matériaux pour étudier les filières de valorisation énergie/matière de résidus et bioressources. Ses activités répondent aux défis scientifiques et technologiques de la transition énergétique et du développement d’une économie circulaire. Adoptant une vision systémique, les recherches concernent les procédés et co-produits intervenant dans les étapes de transformation et traitement secondaire de matières premières renouvelables, pour produire des biocarburants et gaz vecteurs d’énergie, ainsi que des substituts matière valorisables. Les études
Privilégient le développement d'installations décentralisées et prennent en compte la sobriété énergétique des filières et leur impact environnemental, au travers de la maîtrise des émissions polluantes ou à effet de serre. Les activités sont centrées autour de trois thématiques :

- Procédés de conversion et systèmes énergétiques des filières de valorisation des résidus.
- Procédés de traitement et conditionnement des gaz appliqués aux émissions et vecteurs énergétiques
- Production et caractérisation de co-produits adsorbants et réactifs issues de la conversion de matières carbonées.

Les aspects transverses concernant l'intégration des briques technologiques et l'optimisation des filières sont aussi considérés.
Organigramme de l’UMR
L’organigramme actuel de l’UMR est donné ci-dessous (voir ci-après pour les services support administratif et technique).

Gouvernance de l’UMR
La gouvernance de l’UMR est assurée par le Directeur assisté d’un Conseil de Direction qui se réunit mensuellement. Le Conseil de Laboratoire se réunit 2 à 3 fois par an. En plus des membres élus (seuls ayant droit au vote le cas échéant), il est ouvert à l’ensemble du laboratoire, le Conseil de Laboratoire étant un moment de partage avec l’ensemble du personnel de l’Unité.

Pour assister l’UMR, la gouvernance est complétée par un Conseil Scientifique, et un Comité d’Orientation Stratégique (chacun étant réuni annuellement). Au besoin, un Conseil Technique-Innovation est mobilisée, pour faire le lien entre centres techniques et avec les Poles de compétitivité.
Equipe administrative et technique
En plus de l’intéraction avec les services centraux de chacune des tutelles, l’UMR s’appuie sur une équipe administrative composée d’un poste de Secrétaire Générale (Université de Nantes), d’un poste de Secrétaire de Direction (CNRS) et de secrétariats de sites. La composition est donnée ci-dessous.

Equipe Administrative de l’UMR :
- M. Bosser – Secrétaire Général - DRPI – Université de Nantes
- C. Bouthet – Gestionnaire – ADJENES - IUT Nantes
- D. Briand – Secrétaire – CDI – IMT A
- C. Broussard – Coordinatrice Adm. – AI - CNRS
- C. Buchou – Gestionnaire – T RF - IUT Nantes
- Dore – Gestionnaire - AdjT - ONIRIS
- L. Sarahoui – Gestionnaire – CDI – IMT A
- M.P. Fuchs – Gestionnaire – T - CNRS

Ci-dessous est donné l’organigramme des services, incluant les services techniques (attachés aux équipes de recherche).
Objectifs et demandes associées pour la période 2018-19

Chaque année, le laboratoire via la demande DIALOG (CNRS) effectue un bilan de ses objectifs et cibles associées. Cela se concrétise également par une demande de moyens aux tutelles. Ces éléments sont repris ci-dessous pour information. Ils permettent en effet d’identifier les priorités à court terme de l’UMR.

<table>
<thead>
<tr>
<th>Objectif 1</th>
<th>Cible 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etre un acteur de référence au niveau national et international dans le domaine du Génie des Procédés pour la valorisation des bioressources et le développement des écotechnologies.</td>
<td>Poursuivre le déploiement du projet intégré de l’UMR en Recherche-Formation-Innovation, concrétisé dans le projet IGProBE inscrit au CPER et co-financé FEDER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectif 2</th>
<th>Cible 2</th>
</tr>
</thead>
</table>
| Devenir un acteur incontournable des procédés de production et de raffinage des microalgues, de valorisation des déchets, et renforcer les activités de recherche portant sur le traitement de l’air et (bio)capteurs | Renforcer les thématiques scientifiques de domaines à fort enjeux : écologie industrielle, économie circulaire, valorisation des bio et agro-ressources
Poursuivre le développement des activités de recherche et de transfert du GEPEA autour de ses plateformes de référence : AlgoSolis, PREVER, SAFEAIR, MARS, LabCom RIMAE |

<table>
<thead>
<tr>
<th>Objectif 3</th>
<th>Cible 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renforcer le positionnement de l'activité agroalimentaire et polymères / matériaux biosourcés au niveau national et européen.</td>
<td>Déploiement inter-régional (Grand-Ouest) de la Structure Fédérative « Ingénierie des biopolymères pour la structuration des matrices et des matériaux » (IBSM), avec le laboratoire Biopolymères Interfaces Assemblages (INRA-BIA) ainsi qu’en valorisant le nouveau LabCom MixiLab (démarré en 2016)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectif 4</th>
<th>Cible 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mieux structurer et renforcer le fonctionnement administratif de l'UMR</td>
<td>Consolider l'équipe administrative multi-sites et multi-tutelles (recrutement, mise en place de procédures internes)</td>
</tr>
</tbody>
</table>
Rappel de la demande en cours auprès des tutelles (demande DIALOG 2018-19)

L’Unité est bien structurée scientifiquement, mais a une marge de progrès concernant « l’UMRisation » de son administration (caractère multi-sites et multi-tutelles). Cet ensemble a défini une première priorité pour l’UMR, qui est de mieux structurer et renforcer son fonctionnement administratif. Ceci a été initié récemment par la mise à disposition par l’Université de Nantes d’un support temporaire de poste de Secrétaire Général qui prendra effet le 1/10/19. Cela a pour but à la fois d’aider le nouveau Directeur à prendre pleinement ces fonctions dans le contexte particulier d’une transition brusque, et d’accompagner l’UMR dans cette mise en place effective de son administration, reconnue en effet comme une faiblesse possible à terme de l’UMR.

Cela se concrétise par les demandes des équipes OSE et MAPS2 qui expriment à ONIRIS depuis 2017 une demande de renfort en Secrétariat et Assistance de gestion.

L’UMR a une excellente reconnaissance et de réelles spécificités au niveau national sur (i) les procédés de valorisation des bioressources marines (plateforme ALGOSOLIS), (ii) sur les procédés agroalimentaires de transformation des bio-ressources agricoles et de mise en œuvre des matériaux bio-sourcés ainsi que (iii) sur les écotechnologies appliquées aux bio-énergies (valorisation des bio-ressources et des résidus biomasse) (Plateforme PREVER) et aux procédés de traitement de l’air, des gaz et des eaux (plateforme SAFEAIR). Ces dernières années ont également vu la mise en place de 2 LabComs MIXILAB (agitation / mélange) et RIMAE (capteurs) ainsi que l’éclosion de 2 nouvelles plateformes « MARS-Méthodes Analytiques Rapides » (GEPEA La Roche / Yon, TEAM) et « Baking » (GEPEA ONIRIS, MAPS2).

Les demandes aux tutelles visent à poursuivre sur cette dynamique pour renforcer le positionnement sur les domaines à fort enjeu que sont les Ecotechnologies et les Bioressources. Les demandes visent à consolider à la fois la recherche amont, et la recherche s’appuyant sur ses plateformes.

Concernant les aménagements et infrastructures, les demandes identifiées comme prioritaires sont :

- Site de Nantes : création d’un bâtiment dédié aux activités de recherche et de transferts technologiques des équipes de recherche de l’IUT de Nantes. L’objectif est de regrouper toutes les activités en un même lieu dans un bâtiment attenant à celui existant.

Concernant les besoins en personnel, les demandes visent à couvrir de nouveaux besoins (liés à des augmentations d’activités sur certaines thématiques en plein expansion) mais également des départs en retraite majeurs pour l’UMR.

Concernant l’équipe BAM, le développement important des activités portées notamment par la plateforme AlgoSolis (écologie industrielle, production et valorisation des microalgues) vient renforcer de façon complémentaire les programmes de recherche menés au sein de l’UMR depuis de nombreuses années, et constitue en ce sens une perspective majeure pour le Laboratoire. Les demandes visent donc à renforcer cette dynamique (à noter que la demande pour la plateforme AlgoSolis est regroupée ici avec celle du GEPEA) :

- Demande d’un CR CNRS en modélisation intégrative des procédés pour la valorisation énergétique de la biomasse.
- Demande d’un support d’ASI en instrumentation (priorité de l’UMR depuis plusieurs années à l’U. Nantes Polytech pour la promotion d’une technicienne).
- Demande d’une promotion d’un ASI à l’U. Nantes IUT de Saint Nazaire fortement impliqué sur la plateforme AlgoSolis dans le développement d’instrumentation et de contrôle-commande des systèmes de culture solaire de microalgues.
- Demande de création à l’U. Nantes d’un support de Technicien sur la plateforme AlgoSolis** en soutien aux projets et pour assurer la maintenance du parc d’équipements fortement consolidé aujourd’hui suite aux projets et investissements CPER.

L’équipe MAPS2 couvre à la fois le domaine agroalimentaire et les matériaux. Les priorités sont de renforcer les forces de l’équipe qui s’appuie sur une vision intégrative procédé-matrice, tout en développant l’expertise de l’UMR dans le domaine des polymères biosourcés, et en poursuivant l’effort dans le domaine sensoriel en travaillant sur la phase de déstructuration des matrices.

- **Demande à ONIRIS de 2 postes de MCF** (1 poste « Matrices Alimentaires : Transferts et Procédés » pour compenser le départ en retraite du PR D. Poncelet ; 1 poste « Innovation et procédés » pour le maintien d’Emilie Korbel).
- **Demande à ONIRIS de 3 postes d’ITA**, à savoir deux d’IR et un AI faisant suite à la mise en place des plateaux « Baking » et « Sensorialité ».

Nous souhaitons renforcer les équipes VERTE et TEAM, mobilisées sur les thématiques portant notamment sur la valorisation énergétique et matière des déchets, dans le domaine des procédés de séparation avec transfert – réaction qui ouvrent des problématiques transversales à ces deux équipes :

- **Demande d’un CR CNRS** spécialisé sur les mécanismes mis en jeu aux différentes échelles du procédé (écoulements en milieux poreux, transferts gaz - liquide - solide ainsi que des réactions chimiques ou biologiques).
- **Demande à IMT-A d’un IR** afin de consolider les activités portées par l’équipe VERTE au sein de la Plateforme PREVER.
- **Demande à l’U. Nantes IUT La Roche sur Yon d’un poste d’ASI** sur la thématique Biocapteurs portée par l’IUT de la Roche sur Yon, pour soutenir la mise en place des équipements et leur utilisation au sein de campagnes expérimentales spécifiques. Cette demande est également justifiée par le souhait d’une collègue parisienne de rejoindre La Roche / Yon.
- Demande à l’U. Nantes IUT La Roche sur Yon d’un poste MCF en 31ème section sur la thématique «spectroscopie appliquée au vivant»

Il est également demandé un poste d’AI rattaché à l’U. Nantes IUT de Nantes. Cette demande vise à assurer de multiples besoins du laboratoire dans la conception et la réalisation mécanique de montage, en bénéficiant du parc machine disponible à l’IUT. Cette demande est issue d’une réflexion concertée entre les laboratoires GEPEA et LS2N.

A noter qu’il a été recensé les demandes en équipements faisant appel à un cofinancement des tutelles, ainsi que le soutien en fonctionnement.

* UMRisation : Mise en place d’outils et d’une organisation facilitant au quotidien la gestion de l’Unité et/ou l’extraction rapide d’indicateurs d’aide au pilotage de l’Unité (RH/Publications/Contrats/ Outils spécifiques et PF).

Concernant AlgoSolis : un poste d’Ingénieur de Recherche et un poste de Technicien (ou d’Adjoint- Technique) ont été demandés à l’Université de Nantes dès 2017 pour le fonctionnement au quotidien la plateforme AlgoSolis dans le cadre de programme de recherche collaborative. Un poste d’IR a été créé à l’U. de Nantes, en remplacement d’un poste pris en charge préalablement par sa filiale Capacités. La demande vise cette année à finaliser cette demande, par la création d’un poste de Technicien (ou d’Adjoint-Technique) sur fonds propres de la plateforme, rattaché à l’U. de Nantes.
Axe « Procédés pour les Bioressources »
Présentation générale

Cet axe regroupe les équipes BAM et MAPS², toutes deux impliquées dans la transformation des bio-ressources au sens large, avec d’une part les bioressources d’origine agricole, et d’autre part, les bioressources microalgales. Les deux équipes sont :

- **Equipe BAM**: Equipe BAM: Bioprocédés Appliqués aux Microalgues
- **Equipe MAPS²**: Matrices/ Aliments/ Procédés/ Propriétés/ Structure - Sensoriel

Les débouchés principalement visés par l’équipe BAM s’appuient sur la ressource « microalgues » avec d’une part des produits à haute valeur ajoutée pour par exemple l’industrie cosmétique et celle des compléments alimentaires, et d’autre part, les lipides pour des applications en bioénergie. L’équipe s’intéresse en particulier à développer des approches intégrées culture-extraction, en sélectionnant les souches et/ou orientant les conditions de culture afin d’optimiser la production et l’extraction de molécules d’intérêt. L’approche globale concerne aussi la valorisation de la biomasse (approche bioraffinerie). Après extraction des molécules cibles, la matière résiduelle contient par exemple des protéines et des polysaccharides qui représentent de nouvelles ressources pour l’alimentation (animale, humaine), qui est un secteur applcatif presque vierge pour les microalgues. En outre, ces macromolécules semblent présenter des propriétés émulsifiantes importantes, qui, par ailleurs, posent des problèmes pour l’extraction de la phase lipidique issue des microalgues après leur destruction en voie humide, mais qui pourraient être mises à profit pour des applications pour la fabrication de mousses ou d’émulsions alimentaires. Les procédés mis en oeuvre dans l’équipe BAM concernent au final les bioréacteurs au sens large pour la production de microalgues et les procédés en aval, de la destruction cellulaire, à l’extraction et la séparation/purification.

L’équipe MAPS² (Matrices et aliments, Procédés/Propriétés, Structure/Sensoriel) s’intéresse aux procédés de transformation incluant une maîtrise des variables d’état, pression et température, et des variables de procédés additionnelles, telles que le cisaillement, les perturbations électricques pour le changement de phase, les interactions physicochimiques (liquides ioniques) etc. Les applications sont variées et concernent l’agroalimentaire principalement et également les matériaux biosourcés pour l’essentiel. Les actions menées dans l’axe sont synthétisées ci-dessous. Les sourcings/bioressources phares de l’axe sont les produits issus de l’agriculture et les micro algues.
Les détails des actions menées sont illustrés dans le schéma ci-dessous de manière générique.

En se basant sur les thèses réalisées sur la période, on retrouve pour MAPS² 29 thèses réparties selon les domaines – technologies ci-dessous et pour BAM 41 thèses centrées sur les microalgues. La présentation des thèses MAPS² est faite d’une part en suivant les 3 familles de procédés de MAPS² et d’autre part en considérant les domaines d’application ; le volet matériaux comprend 3 thèses sur le développement de bougies, le recyclage de thermoplastiques, par exemple. A noter que 2 chercheurs sont partagés entre OSE et MAPS², et rattachés à l’UN. Les thèses BAM concernent diverses thématiques portant sur production de biomasse (44%), de lipides (20%), de pigments (10%) et de polysaccharides (10%) pour donner les principales applications (% en ordre de grandeur).

Perspective générale

Le regroupement de MAPS² et BAM dans cet axe a un sens de par le fait que certains procédés tout comme certains sourcing peuvent être mutualisés. L’implication de ces deux équipes dans un axe commun devrait ainsi permettre de développer des sujets conjoints, que ce soit en termes de partages de méthodologies d’approche, ou de partage de compétences sur les secteurs applicatifs.

Cela peut concerner la valorisation des microalgues dans les secteurs de l’agroalimentaire et des agromatériaux, le recyclage de coproduits alimentaires dans la culture de microalgues, ... par exemple. Des collaborations ont déjà été mises en place dans le cadre d’un programme sur la production de biobitume. D’autres ont été déposés (deux projets européens touchant aux...
microalgues dont un piloté par BIA dans le call H2020 sur les nouvelles sources de protéines). Les activités transverses au sein de l’axe sont en phase de construction avec divers projets déposés ou en cours de dépôt incluant par exemple des bouclages de revalorisation de co produits ou déchets issus de l’agriculture ou de la biomasse vers des applications alimentaires et non alimentaires. Certains de ces projets se font en synergie avec les acteurs locaux en particulier BIA-INRA Nantes dans le cadre de la SFR IBSM.

L’utilisation des liquides ioniques, qui est déjà opérationnelle dans l’équipe MAPS², est une thématique qui peut également être développée, à la fois pour mieux maîtrisée la décomposition de la biomasse microalgale, mais également comme auxiliaire technologique pour les opérations de séparation.

Ces points de synergies représentent des opportunités. Toutefois, l’axe ne vise pas à une fusion des deux équipes qui évoluent chacune dans des univers spécifiques. Pour BAM, cela concerne l’approche intégrée production, caractérisation et valorisation des micro algues, et pour MAPS², une méthodologie basée principalement sur la physico-chimie des procédés et ingénierie des produits à travers une approche multi-échelle « procédés-processus-produit ». Un point de recouvrement existe sur l’approche multi-échelle de BAM, depuis le métabolisme, sa compréhension et maîtrise, l’application aux procédés de bioproduction et de raffinage pour aboutir à une maîtrise de la quantité de la qualité du produit biosourcé.
Equipe BAM
« Bioprocédés Appliqués aux Micro-algues »

Responsable : Olivier Gonçalves (UN)
Co-responsable : Mariana Titica (UN)

Présentation de l’équipe

<table>
<thead>
<tr>
<th>Chercheurs et enseignants chercheurs permanents</th>
<th>Personnel technique (non administratif)</th>
<th>Doctorants</th>
<th>Post-Doctorants</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>12 permanents + 6 non permanents</td>
<td>41 dont 24 en cours et 17 thèses soutenues</td>
<td>4</td>
</tr>
</tbody>
</table>

Chercheurs et enseignants-chercheurs permanents

- Walid BLEL MCF, Université de Nantes
- Patrick BOURSEAU Professeur, Univ. Bretagne Sud
- Guillaume COGNE MCF, Université de Nantes
- Estelle COUALLIER Chargée de Recherche, CNRS
- Matthieu FRAPPART MCF Université de Nantes
- Emilie GADOIN MCF Université de Nantes
- Caroline GENTRIC Professeur Université de Nantes
- Olivier GONÇALVES MCF, HdR, Université de Nantes
- Dominique GRIZEAU MCF, Université de Nantes
- Pascal JAOUEN Professeur, Université de Nantes
- Jack LEGRAND Professeur, Université de Nantes
- Luc MARCHAL MCF, HdR, Université de Nantes
- Anthony MASSÉ MCF, Université de Nantes
- Jérémy PRUVOST Professeur, Université de Nantes
- El-Khider SI-AHMED Professeur, Université de Nantes
- Mariana TITICA MCF, Université de Nantes

Personnels techniques permanents

- Emmanuel DECHANDOL Assistant Ingénieur, UN, 50%
- Catherine DUPRÉ Ingénieur de Recherche, CNRS
- Delphine DROUIN Ingénieur d’étude, CNRS, 100%
- Laurence LAVENANT Technicienne, INRA, 50%
Personnels techniques non permanents

Rémy COAT Ingénieur de Recherche contractuel, 100%
Marie CUEFF Ingénieur d’Etude contractuelle, 100%
Darièle PRO Ingénieur coordi/valoris. (AMI) contractuelle, 100%
Valéria MONTALESCOT Ingénieur coordination (AMI) contractuelle, 100%
Elsa GERARD Ingénieur d’étude contractuelle, 100%
Maéva VIGNAUX Ingénieur d’étude contractuelle, 100%

Doctorants

En cours

10. **Mme Meriem Ben Hamouda** « Domestication et l’optimisation des conditions de culture de la souche Haematococcus pluvialis, extraction de molécules bioactives et étude des activités biologiques des extraits ». 2016-2020, Thèse en co-tutelle avec Adnen KACEM de l’Institut Supérieur de Biotechnologie de l’Université de Monastir, Directeurs Pr Jack Legrand (40%) Co-encadrement C. DUPRE et D. GRIZEAU, soutenance prévue en 2020.

11. **Joris Sebile-Meilleroux** « Modélisation, optimisation et contrôle avancé de photobioréacteurs pour la production à grande échelle de microalgues ». Financement ADEME-Région, Directeur de thèse : Jérémy Pruvost, Co-encadrants : Mariana Titica (30%), Stéphane Grieu (30%) (Université de Perpignan, PROMES), Thèse demarée au 1er octobre 2018, Soutenance prévue en Octobre 2021.

17. **Eglantine Todisco** « Optimisation de la croissance de microalgues en façade de bâtiment”Début 4 Janvier 2016, Financement CIFRE, Directeur de thèse : Jérémy Pruvost (40%), Co-encadrants : Jérémy Pruvost (30%), Soutenance prévue en Mars 2019

20. **Armel Noubissie Youaleu** « Etude et optimisation de la culture de microalgues sur eaux usées de station d’épuration ». 2017-2020, Financement ADEME programme
Thèses soutenues

7. **Charlène Thobie** «Etude et modélisation de l’hydrodynamique et des transferts gaz-liquide dans un photobioréacteur à haute productivité volumique », début 01/10/2014, Directeurs : C. Gentric (40%), J. Pruvost (30%), Co-encadrant : W. Blel (30%), soutenue le 17 avril 2018, situation actuelle : Ingénieur de recherche Brochier Technologies

Post-doctorants, ATER et chercheurs seniors accueillis

Post-doctorants

1. Aumaya Taleb, ATER Poytech Nantes, Département Génie des Procédés-Bioprocédés,
3. Charlène Thobie, ATER IUT Saint-Nazaire, Département Génie Chimique-Génie des Procédés, 2017-2018

Chercheurs seniors accueillis

1. Howard Fallowfield « Prof Univ Flinders Adélaïde - Australie, monter un projet MOPGA sur 3 ans. » Début 17 09 2018 - 19-09-2018, financement AIM.

3. **Navid Moheimani**, Senior lecturer at Murdoch University. Navid is director of Murdoch University Algae R&D Centre. He is a senior algal technical specialist who has over 18 years experience as an applied phycology in both industry and academic. During the last few years Navid has mainly been involved in developing large-scale microalgal culture for wastewater treatment and biomass production. He is interested in developing novel methodologies for improving microalgae cultivation systems and increasing biomass productivity. He also has experience in both conventional and unconventional biofuel production, and in developing life cycle analysis for algal production. » Début 01 10 2018 - 23-12-2018, financement GDRI - AMI.

5. **Rozenn TREPOS** « recyclage du milieu de culture de Skeletonema marinoï et optimisation des conditions de sa culture » début 01/10/2018 Financement : Bourse AMI et IFREMER. Directeurs : Anthony MASSE et Christophe STAVRAKAKIS

Politique scientifique

Missions et objectifs scientifiques
Fort de sa longue expérience dans les bioprocédés appliqués aux bioressources marines, le laboratoire GEPEA est aujourd’hui fortement reconnu pour ses activités autour du développement de procédés de culture et de valorisation des microalgues. L’intérêt applicatif autour de cette bioressource est également en plein essor, en particulier pour répondre aux défis de demain que sont l’alimentation, la dépollution, la chimie verte, la santé et l’énergie. Les objectifs de l’équipe BAM sont centrés sur les verrous scientifiques et technologiques liés à l’industrialisation de la filière microalgues. En effet, les spécificités de cette bioressource (microorganismes photosynthétiques se développant en milieu aqueux) induisent un grand nombre de problématiques scientifiques propres au Génie des (Bio-)Procédés, comme (1) maîtriser et optimiser la bioréaction photosynthétique, (2) développer, optimiser et contrôler les procédés de production et de bioraffinage des microalgues et (3) intégrer les opérations unitaires pour une mise en place d’une exploitation industrielle optimisée (figure 1).

![Figure 1 : Chaine de valeur de la filière microalgue](image)

Le laboratoire dispose aujourd’hui des compétences et des outils pour aborder ces problématiques par une recherche située aux interfaces entre les notions fondamentales du Génie des Procédés.
(réacteurs, phénomènes de transferts, contrôle) et les disciplines issues des Sciences du Vivant (microbiologie, physiologie, post-génomique et génie métabolique). L’objectif général de l’équipe BAM consiste à s’appuyer sur ce positionnement original et relativement unique pour développer son projet scientifique et affirmer ainsi sa reconnaissance internationale dans le domaine. L’accent est pour cela mis sur :

- **La pluridisciplinarité** (génie des procédés, microbiologie, biologie, chimie analytique…) qui sera développée au sein de l’équipe, mais aussi en collaboration avec d’autres équipes du GEPEA (ex : Equipe MAPS pour la valorisation alimentaire, Axe Ecotechnologies pour les applications Environnement), ou par des projets collaboratifs avec des partenaires externes,
- **L’intégration**, en travaillant de la souche à la (aux) molécule(s) cible(s) entrant dans la composition d’un produit d’usage ou utilisable(s) comme ingrédient(s) biosourcé(s), ce qui implique de maîtriser la réaction biologique, la culture en photobioréacteurs dédiés, le bioraffinage de la biomasse récoltée et le recyclage des effluents,
- **L’utilisation d’outils de pointe**, et en particulier la plateforme AlgoSolis (UMS CNRS 3722) conçue pour répondre aux enjeux scientifiques de la filière industrielle de valorisation des microalgues.

Orientations et choix stratégiques

Le projet scientifique de l’équipe BAM est construit autour de deux thèmes principaux, à savoir « Bioproduction » et « Séparation et Bioraffinage », ces deux thèmes étant associés à un thème transversal « Intégration Bioproduction - Bioraffinage ». La description ci-dessous décrit les orientations scientifiques et les enjeux pour chacun de ces thèmes :

Thème « Bioproduction »

- **Physiologie et métabolisme des microalgues** : l’objectif final est ici d’optimiser et de contrôler la réaction biologique. Cela inclut (1) la recherche de souches avec en particulier la mise en place de stratégies de crible ciblées sur l’application finale (ex : sélection sur critères de production, sur production de métabolites d’intérêt, de fonctions biologiques originales, etc), (2) l’étude de l’adaptation des souches aux conditions de culture (influence des stress environnementaux sur le métabolisme des microalgues, orientation métabolique, culture sur milieux recyclés) et (3) la maîtrise de la culture en conditions réelles d’exploitation (adaptation aux conditions de production solaire, gestion de la contamination et de la dérive biologique).

- **Ingénierie et intensification de photobioréacteurs** : l’objectif est ici de travailler sur la culture des microalgues à l’échelle des procédés de production. Cela inclut en particulier de poursuivre l’effort déjà engagé sur (1) l’intensification des photobioréacteurs (technologies « couche mince » type AlgoFilm) et leur extrapolation et optimisation en conditions réelles d’exploitation solaire et (2) la modélisation et l’intensification des phénomènes de transfert au sein de ces systèmes (transferts radiatif et thermique, transferts gaz/liquide de CO₂ ; hydrodynamique en milieu confiné sous forte concentration cellulaire, étude des effets d’un environnement hétérogène -carbone dissous, pH, lumière- sur la croissance …) (3) la conception d’outils génériques de contrôle avancé pour assurer une gestion de fonctionnement optimale en présence des aléas climatiques (optimisation de la conversion solaire, gestion de la thermique dans le système de culture)

- **Systèmes intégrés pour la bioproduction** : l’objectif final est ici l’intégration industrielle de la culture de microalgues dans une logique de symbiose industrielle (écologie industrielle). Cela regroupe en particulier l’ensemble des problématiques propres à la production sur effluents gazeux et liquides, une des voies de développement de la filière
microalgues étant la valorisation d’effluents comme le CO₂ issu de fumées ou les nitrates des eaux résiduaires (approche « waste-to-value »). Les problématiques associées sont l’étude physiologique des limitations/dérives biologiques (métaux, mixotrophie pour effluents liquides), la définition de procédés/protocoles de production robustes et optimisés, le traitement éventuel des intrants… À noter que des collaborations seront ici lancées avec les équipes TEAM (biocapteurs, prétraitement des gaz) et OSE (intégration système).

Pour mener à bien ces objectifs, le thème Bioproduction s’appuie sur des outils très variés (Figure 2). L’effort est en particulier mis sur (1) le développement des approches de physiologie qualitative/quantitative en photobioréacteurs/bancs de criblage en conditions contrôlées (incluant le développement d’approches combinées de métabolomique/fluxomique/bioinformatique), (2) la modélisation fine des phénomènes impliqués (modèles radiatifs, couplages cinétiques à la réaction biologique, modèles métaboliques), (3) les outils de la Mécanique des Fluides (CFD, PIV, polarographie….) pour les aspects propres à l’optimisation des écoulements en milieux confinés tels qu’obtenus dans les technologies couche mince en particulier, (4) outils de modélisation dynamique et de contrôle avancé pour l’optimisation du fonctionnement des procédés en conditions réelles. La plateforme AlgoSolis constitue également un outil essentiel (investigations expérimentales et validation à grande échelle, optimisation des technologies de culture solaire et de la croissance photosynthétique en conditions réelles ; culture sur effluents industriels, problématiques liées à la production solaire, contrôlée et intensifiée des microalgues à grande échelle).

Figure 2 : Activités du thème Bioproduction depuis la sélection de souches (gauche), l’ingénierie et l’intensification des photobioréacteurs, la modélisation et le contrôle avancé (centre) jusqu’à l’intégration sur la plateforme Algosolis et industrielle des systèmes de culture (droite).

Thème « Séparation et Bioraffinage »

- **Interactions physico-chimiques en milieu complexe** : il s’agit ici de comprendre à l’échelle locale les interactions procédés-cellules-biomolécules lors des étapes de bioraffinage en voie humide. Ce sujet, relativement nouveau au laboratoire, implique d’étudier les interactions physico-chimiques en milieu complexe et donc la caractérisation de ce milieu. L’approche est donc multi-échelle, la modélisation ayant ici un rôle central (modélisation des interactions et organisations moléculaires dans le mélange après déconstruction cellulaire ; modélisation des interactions biomolécules-interfaces liquide-liquide et liquide-solide rencontrées dans le procédé d’extraction ou de séparation membranaire). Des collaborations sont envisagées avec l’équipe MAPS2 (destructuration de la matrice végétale, fonctionnalisation, analyse biochimique).

- **Récolte et fractionnement de biomasse microalgale** : il s’agit ici de travailler au développement et à l’optimisation des procédés de séparation-fractionnement de la
biomasse microalgale fonctionnant en particulier en voie humide pour répondre à la spécificité de la biomasse microalgale (teneur en eau > 90%). Cette contrainte forte implique de développer de nouveaux procédés, comme la déconstruction cellulaire couplée à des procédés de fractionnement-séparation. L'effort porte sur chaque étape avec pour but de comprendre, modéliser et intensifier chacune d’elle, ainsi que leur couplage, les deux opérations de destruction-séparation étant très liées. Concernant l'intensification, des développements spécifiques sont menés sur la technologie elle-même (extraction centrifuge, procédés membranaires pour la récolte et le fractionnement de métabolites) ou sur sa mise en œuvre (intensification par fonctionnement en régime transitoire, par couplage transfert-réaction,…). A noter que ce sujet est très intégratif car il s'appuie sur la compréhension des interactions physico-chimiques obtenues dans la solution après broyage, mais implique aussi de faire un lien avec la morphologie/physiologie des cellules pour la mise en place par exemple de protocoles de déconstruction progressive.

- **Systèmes intégrés pour le bioraffinage**: l’objectif est de développer des procédés intégrés adaptés au bioraffinage de la biomasse microalgale, ce qui constitue donc le but final des développements précédents. Cela va bien au-delà de la simple association d’opérations unitaires, les étapes de bioraffinage étant très interdépendantes, avec de plus une grande influence de la ressource initiale sur l’ensemble du procédé. Cela implique donc de s’appuyer sur les résultats obtenus sur chaque opération pour élaborer des chemins de procédés de bioraffinage adaptés à la souche, aux contraintes (milieu, échelle) et aux objectifs (produits cibles), tout en prenant en compte les phénomènes de couplage entre les opérations de bioraffinage. Outre le couplage expérimental d'opérations unitaires, la modélisation globale des scénarios est ici essentielle pour optimiser le schéma de bioraffinage. Cela implique cependant de renseigner ces modèles en prenant en compte l'ensemble des éléments importants comme les flux matière, les aspects physico-chimiques, etc.…

Les études menées au sein du thème Bioraffinage s’appuient sur des études expérimentales sur les équipements de bioraffinage disponibles au GEPEA (destructeurs cellulaires, membranes, extracteurs, etc) ou en collaboration externe (Champs Electriques Pulsés ou CEP). La modélisation est aussi appliquée, avec une approche multi-échelle abordant l’enchaînement des procédés, mais également des études locales des interactions physico-chimiques en milieu complexe, avec des approches originales comme la dynamique moléculaire gros grains (DPD) (figure 3). La plateforme AlgoSolis permet de disposer de biomasse en quantité importante pour réaliser les études de bioraffinage. Les équipements disponibles sur la plateforme sont également utilisés.

Figure 3 : Activités du thème Séparation et Bioraffinage depuis la compréhension des interactions physico-chimiques (gauche), la récolte et le fractionnement (centre) jusqu’au développement de systèmes intégrés pour le bioraffinage (droite).
Thème transversal Intégration Bioproduction-Bioraffinage

Ce thème transversal intègre les résultats des développements menés en bioproduction et bioraffinage. La création de ce thème s’explique par (1) le besoin d’intégrer chaque aspect pour mettre en place un procédé complet de valorisation industrielle, (2) la très forte interdépendance entre les deux étapes de production et bioraffinage, et (3) la possibilité au sein du laboratoire GEPEA d’intégrer sur un même site ces deux étapes pour donc en étudier les interactions, ce qui est un sujet scientifique en soi.

L’objectif général consiste à développer et optimiser des procédés d’exploitation industrielle optimisés des microalgues, avec une intégration et une optimisation des étapes de production-récolte-destruction-séparation, la prise en compte de la variabilité du vivant sur les étapes de bioraffinage, et donc l’optimisation rétroactive des conditions de production pour le bioraffinage (concentration en biomasse, état physiologique, orientation métabolique). Grâce à la plateforme AlgoSolis, il est possible de travailler sur le changement d’échelle et la validation/optimisation en conditions réelles (gestion des phases d’attente/conditionnement entre opérations unitaires, prise en compte des variations de conditions de production…) (figure 4). A noter que ceci est relativement unique au niveau international et constitue un réel atout pour le rayonnement de l’équipe, ainsi que pour la réussite de projets scientifiques du fait de son rôle fédérateur et pluridisciplinaire, avec des problématiques au cœur du Génie des Procédés (changement d’échelle, développement et séquençage optimisé d’opérations unitaires…).

Figure 4 : Activités du thème transversal, illustration des équipements présents sur Algosolis

Résumé des principaux objectifs et cibles associés au projet scientifique de l’équipe BAM :

- Focalisation des efforts sur la valorisation industrielle de la bioressource microalgale
- Poursuite des rapprochements scientifiques entre les activités de l’équipe : couplage production de biomasse et extraction (développement des concepts de bioraffinerie, mise en place de procédés dédiés aux microalgues - biomasse humide et cellules microscopiques), développement analytique dédié aux cultures de microalgues (analyses biochimiques, suivi de milieux), développements analytiques spécifiques (ex : méthode de suivi en ligne de l’état physiologique et de l’accumulation de lipides dans des cultures de microalgues par des approches non invasives, …)
- Poursuite des travaux d’intensification sur les opérations unitaires de production, extraction, séparation (i) pour une meilleure efficacité (ex : productivité améliorée des photobioréacteurs en métabolite(s) cible, meilleure sélectivité du fractionnement par couplage de systèmes membranaires et extractifs), (ii) en vue de l’extrapolation, du dimensionnement et de l’évaluation économique des procédés (modélisation et conception de systèmes extrapolés),
(iii) pour étendre les applications actuelles de chaque procédé (ex : extension de la CPC comme système d’extraction intensifié voire biocompatible sur biomasse humide).
- Utilisation de la plateforme R&D AlgoSolis pour aborder des sujets de recherche sur la production-exploitation industrielle de microalgues.
- Développement des thèmes propres à la production solaire de biomasse microalgale à grande échelle : développement technologique et photobioréacteurs intensifiés, mise en œuvre solaire, développement d’outils théoriques dédiés de modélisation, contrôle avancé, industrialisation
- Passage à l’échelle industrielle de procédés à fort potentiel (et valorisation du portefeuille de brevets) : (i) photobioréacteurs à haute productivité volumique (technologies solaires et en lumière artificielle), (ii) chromatographie de partage centrifuge (utilisation en tant que système de chromatographie industrielle de composés intracellulaires de microalgues, conception d’appareils préparatifs en partenariat avec l’industrie)…
- Développement de la culture de microalgues sur effluents industriels (approche « waste to value ») et intégration industrielle : valorisation du CO₂ issu de fumées, culture sur effluents liquides, conception de photobioréacteurs intégrés au bâtiment…

Bilan général d’activité et faits marquants de la période 2016-2018

Bilan général d’activité de l’équipe

Lors de la période 2016-18, l’équipe a mené d’importants efforts sur la découverte, la maîtrise de la production et le bioassainage de nouveaux produits d’usage algosourcés étendant ainsi son champ de compétences des lipides à fonction d’usage « énergétique » (biocarburant de 3ème génération) aux polysaccharides, lipides bioactifs, pigments, métabolites secondaires… La mise en place de la plateforme AlgoSolis a permis également de renforcer certaines thèmes, en particulier en écologie industrielle (utilisation du CO₂ industriel, de la chaleur fatale, des effluents eau usées, …) et sur l’intensification et le couplage des opérations unitaires sur toute la chaîne de valeur des microalgues, pour lever les verrous limitant leur exploitation industrielle. L’équipe s’est également particulièrement investie dans la mise en place de formation initiale (Master International sur les Bioprocédés appliqués aux micro-algues) et l’ouverture d’un portefeuille de formations continues sur la culture et l’exploitation de la biomasse microalgale, interconnectant ainsi recherche et formation.

Cela a mené au lancement de plusieurs projets (FUI, Région, Mission Interdisciplinarité du CNRS, ANR, ADEME et Europe) et collaborations industrielles, initiant ainsi des collaborations avec de nouveaux partenaires (privés et/ou académiques, nationaux et/ou internationaux) au cœur de métier complémentaire de celui de l’équipe BAM. Les nouveaux projets ont notamment permis à l’équipe de développer et renforcer ses compétences sur l’ensemble des opérations unitaires de production, extraction, séparation, concentration des fractions ciblées (polysaccharides, lipides bioactifs, pigments, métabolites secondaires,…), tout en intégrant à l’optimisation de ces procédés, les impératifs physiologiques associés aux différentes souches contenant des nouveaux composés à fonction d’usage.

Concernant les efforts menés sur la thématique d’écologie industrielle, de nombreux éléments et résultats sont venus concrétiser les questions scientifiques associées au concept de symbiose industrielle, l’exploitation d’effluents pour la culture de la biomasse ou encore l’intégration de systèmes de culture intensifiés dans des bâtiments. Cette thématique ouvre aujourd’hui de nombreuses perspectives tant en terme de recherche (changement d’échelle et optimisation de la production solaire, couplage aux effluents en collaboration notamment avec les équipes de l’axe Ecotechnologies…) que de collaborations industrielles et académiques (exemple des collaborations avec les Universités de Flinders et Murdoch en Australie, UCLA aux États-Unis).

Faits marquants de la période 2016-2018
- CPER IG-Pro-BE « Institut de Génie des Procédés pour les Bioressources et les Ecotechnologies » (2015-2020) pour un montant total de 2,2 M€ pour l’ensemble du GEPEA.
Les investissements suivant on été réalisés pour GEPEA-BAM et ALGOSOLIS avec des montants respectifs de 232 k€ et 298 k€ pour 2016 (souchothèque, culture, récolte, séparation et mise aux normes), 79 k€ et 77 k€ (analytique et fluidique), 75 k€ et 90 k€ pour 2018 (culture, récolte et analytique). Les investissements suivants sont programmés pour 2019 et 2020, soit plus précisément : 255 k€ et 305 k€ pour 2019 (culture, raffinage, analytique et souchothèque), 320 k€ et 275 k€ pour 2020 (culture, récolte et analytique).

- **Ouverture d’un Master International** porté par Polytech’Nantes à la rentrée 2018 en Bioprocédés appliqués aux Microalgues (resp. Jeremy Pruvost - Articulation prévue avec le Master of Science de l’Ecole des Mines de Nantes PM3E) : 4 étudiants provenant des universités libanaises (x3) et indonésiennes (x1) et 2 étudiant de l’école polytech (option bioindustrie) en double diplôme pour cette première année de fonctionnement. Des efforts sont également menés pour étendre les relations internationales et déboucher vers des partenariats avec de nouvelles universités (ex venue du Pr Ho-Sung Yoon de l’Université Nationale Kyungpook - KNU, Corée du Sud, Pr Pr Howard Fallowfield, Univ Flinders, Australie, Dr. Navid Moheimani, Univ. Murdoch etc.).

- Mise en place d’une **offre de formation continue** sur la culture de la spiruline, la récolte, le raffinage, et l’analyse des microalgues et de leurs produits.

- **Réhabilitation en 2018 de la Licence Pro OIGP** sous la Mention : Conception et contrôle des procédés; nouvel intitulé de la LP : « Informatique pour les Procédés : Conception, Conduite et Gestion ».

- Stabilisation des effectifs et consolidation de la formation en Génie des Procédés et Bioprocédés de Polytech Nantes. Première promotion sortie en septembre 2015, effectif stabilisé depuis lors à 28 étudiants par promotion avec mobilité entrante et sortante.

- **Labellisations Européennes de la plateforme AlgoSolis** :
 (i) Plateforme pour la R&D à échelle préindustrielle pour la production de biocarburant par microalgues (EERA Bioenergy consortium (http://eera-bioenergy.eu/)).
 (ii) Projet Européen IBISBA, Industrial Biotechnology Innovation and Synthetic Biology, Regroupement de plateformes de biotechnologies européennes (dont ALGOSOLIS), (coordination Mickael O’Donohue), 2017-2021.

- **Stabilisation des collaborations internationales** : UCLA (University of California Los Angeles, USA, L.Plion, transfert radiatif, thèse en-cotutelle de Jack Hoeniges, projet d’UMI en cours de discussion) ; Université Libanaise (Centre AZM de Tripoli, spécialisé en Biotechnologies - échanges d’étudiants de Master, thèses en co-tutelle, dispense de cours en Photobiotechnologie) ; Université de Rimouski – Canada (programme GHANA, aquaculture).

- **Mise en place de nouvelles collaborations internationales** avec
 (i) l’Université de Flinders-Australie (dépôt d’un projet d’accueil du Pr. Fallowfield dans l’appel d’offres Make Our Planet Great Again sur le Traitement des effluents par les microalgues en 2018.
 (ii) l’Université de Murdoch-Australie (thèses en cotutelle),
 (iii) la création d’un GDRI CNRS pour la période 2016-2020 « World Oilalg Network for Design of processes and strains for Elaboration of Renewable energy from microalgae » (“WONDER”). Le GDRI WONDER a pour but de promouvoir les échanges entre des partenaires différents qui présentent individuellement l’expertise dans les domaines clefs de la production de biocarburant à partir de microalgues : l’Université de Tsukuba (Japon) pour la sélection et le criblage des souches et l’optimisation des milieux de culture, l’Université de San-Diego (USA) pour l’optimisation génétique, l’Université de Murdoch (Australie) pour l’optimisation des systèmes de culture et des procédés de récolte et d’extraction et le GEPEA (U.N., France) pour l’optimisation des conditions de culture, des photobioréacteurs et du bioraffinage.
- Des efforts sont également menés pour accroître les partenariats internationaux par le biais d’une augmentation du nombre de dépôt des projets à l’échelle européenne comme les projets H2020 :

(ii) H2020 LC-SFS-17-2019 « Alternative proteins for food and feed » pour le nouveau sourcing protéique à partir de déchets, insectes et micro et macroalgues, (France avec l’INRA et le GEPEA)

(iii) H2020-BBI-JTI-2018, RECONWASTE-BIO sur l’utilisation d’eau usée pour la production de biomasse microalgaé, avec une valorisation des protéines exploitant les vecteurs de type insecte (France, Espagne, UK, Crète, Grèce, Suède, République Tchèque).

ou en préparation sans call identifié :

(i) Projet de collaboration avec le Pr Marcel Utz de l’université de Southampton, UK, (utilisation de la RMN pour des mesures en ligne sur les procédés).

- **Mise en place et/ou renforcement de collaborations nationales** avec la station biologique de Roscoff, les Universités de la Rochelle, de Caen, Rouen et Reims dans le cadre des projets ANR POLYSALGUE et I CHEM ALGAE notamment.

- **Mise en place en/ou renforcement des collaborations régionales**

 (i) avec IFREMER et MMS Nantes, Le Mans, Laval dans le cadre de la dynamique scientifique AMI (2015-2020), portant notamment de futurs projets de GDR et de structuration autour des activités microalgues portées par les experts de la région (technocampus des microalgues)

 (ii) avec le CEISAM (équipe EBSI) dans le cadre des projets régions (AMER-METAL 2017-2020) et mission interdisciplinarité (RMN-(ME)2-TAL 2017-2019) visant à développer de nouvelles méthodes d’analyses en ligne (RMN à bas champ magnétique) pour la mesure de la qualité des produits d’usage algosourcés

 (iii) avec l’INRA de Nantes (équipe BIA) dans le cadre de la valorisation des protéines de microalgue.

- **Pour le thème bioproduction des efforts particuliers ont été menés** sur la découverte et la maîtrise de la production de nouveaux produits d’usage. Initifié en 2015 avec la dynamique scientifique régionale AMI et la thèse de Mlle Eva Cointet visant à valoriser la souchothèque régionale Nantaise (NCC) pour la production de lipides bioactifs, les efforts sur le sourcing ont été poursuivis et concrétisés sous la forme de deux projets ANR cherchant à valoriser les souchothèques de Roscoff (RCC) pour la production de polysaccharides originaux (texturant et bioactifs en cosmécéutique : ANR POLYSALGUE, 2015-2019) et celle de de la société Givaudan pour la production de métabolites secondaires à activité cosmécéutiques (ANR I CHEM ALGAE 2017-2020). Des projets R&D émergents de la structure ALGOSOLIS initient également des investigations sur le développement de biofertilisants, bioélimiteurs et bioprotecteurs algosourcés.

- Renforcement de l’activité portant sur l’**écologie industrielle**, avec des projets poursuivis sur l’utilisation du CO₂ industriel ou des eaux usées (Projets ADEME CIMENTALGUE et ALGOSTEP)

- **Mise en place de nouvelles collaborations industrielles** : de nombreuses collaborations portant sur la valorisation des microalgues ont été lancées ces deux dernières années, notamment par le biais de la plateforme AlgoSolis (SECHE-XTU pour les photobioréacteurs de façade - SANOFI, UCB BioPharma, Pierre Fabre, Givaudan, Rousselet Robatel : CPC - Italcementi Group : fixation de CO₂ - Algosource Technologies : exploitation et
valorisation industrielle des microalgues - Synoxis, Subitech : mesure des performances de nouveaux types de photobioréacteurs et nouveau design - Imunrise : développement pour des biostimulants algosourcés à destination des plantes supérieures

- **Recrutements et nouvelles arrivées** : Benjamin Le Gouic (Ingénieur de Recherche UN, bioproduction de microalgues ALGOSOLIS), Raphaëlle Touchard (Ingénieur d’étude Capacités, bioproduction de microalgues), Guillaume ROELENS (Assistant Ingénieur UN, procédés), Laurence LAVENANT (Technicienne détachée INRA (50%), raffinage et caractérisation des protéines de microalgues), Jordan TALLEC (Ingénieur d’étude Capacité, bioproduction de microalgues ALGOSOLIS) Lucie VAN HAVER (Ingénieur d’étude Capacité, Bioactivité ALGOSOLIS), Rémy COAT (Ingénieur de Recherche contractuel, chimie analytique), Marie CUEFF (Ingénieur d’Etude contractuelle, bioraffinage des microalgues), Danièle PRO (Ingénieur coordination/valorisation contractuelle, programme AMI), Elsa GERARD (Ingénieur d’étude contractuelle, Bioproduction de microalgues) Laura HERVE (Technicienne Capacité, Bioproduction de microalgues), Maéva VIGNAUX (Ingénieur d’étude Capacité, congé maternité de Mme Touchard, bioproduction de microalgues).
Analyse SWOT

Forces

- **Interne**
 - Expertise scientifique reconnue (équipe et chercheurs), couvrant l’ensemble de la chaine de valeur pour la culture contrôlée /valorisation des microalgues
 - Rayonnement académique national et international (ANR, EABA, GDRI). Organisation de grands événements scientifiques (ISAP, SFGP)
 - Très bonne implication dans la formation (initiale, continue, par la recherche).
 - Important soutien de la thématique de la part de la Région des pays de la Loire (AMI) et collectivités
 - Fortes collaborations régionales inter-labo (INRA, IFREMER, ISCR, LBCM, MMS) et internationales
 - Plateforme AlgoSolis (Labels CNRS, EERA, IBISBA, projets industriels collaboratifs)

- **Externe**
 - Important soutien régional, réseautage national et international en cours (Europe)
 - Appels à projet I-Site NExT
 - Forte visibilité internationale et industrielle obtenue grâce notamment à la plateforme AlgoSolis
 - Liens étroits avec le tissu industriel, transfert de connaissance et de technologie avec des similitudes et nouvelles contraintes, ouverture à de nouvelles collaborations, nouveaux secteurs applicatifs (huiles, protéines et hydrolysats), nouveaux défis en ingénierie des procédés de production et de séparation

Faiblesses

- **Interne**
 - Lobbying auprès des instances Européennes
 - Besoin quasi-systémtique de développement de prototypes d'opérations unitaires spécifiques aux microalgues
 - Faiblesses des moyens pour la maintenance des équipements (vétusté de certains pilotes membranaires)
 - Manque de personnel technique statutaire, foncier devenant limitant pour les accueils de chercheurs étrangers et pour la réalisation des projets sur AlgoSolis.

- **Externe**
 - Risques sur le maintien des effectifs de l’équipe BAM : plusieurs départs en retraite prévus (remplacement non garanti), nombreux personnels techniques sur financement propre et diminution du nombre de supports pour des postes pérennes et les promotions (BIATS, EC et C)
 - Prise de direction non anticipée de la direction de l’UMR par J.Pruvost (ancien resp. de l’équipe, directeur AlgoSolis) nécessitant une réorganisation de l’équipe et une modification de la gestion des projets dont il avait la charge
 - Fort climat de compétition inter-régional, national, international, exigence croissante des appels à projet (ANR et Europe)
 - Diminution des enveloppes d’aides au fonctionnement et maintenance (AlgoSolis notamment), avec contraintes fortes sur l’équilibre budgétaire
Perspectives de l’équipe

- **Poursuite des travaux d’intensification sur les opérations unitaires** de production, extraction, séparation, concentration, séchage, fonctionnalisation dédiés aux bioressources marines (i) pour une meilleure efficacité (ex : productivité améliorée des photobioréacteurs en métabolites cibles - entrant dans la composition des nouveaux ingrédients ou produits d’usage identifiés, meilleure sélectivité du fractionnement par couplage de systèmes membranaires et extractifs), (ii) en vue de l’extrapolation, du dimensionnement et de l’évaluation économique des procédés (modélisation et conception de systèmes extrapoloïs), (iii) pour étendre les applications actuelles de chaque procédé en allant vers des couples procédés/nouveaux produits, (iv) tout en prenant en compte la préservation de la qualité de la biomasse ou des fractions ainsi préparées.

- **Poursuivre les rapprochements scientifiques entre les activités de l’équipe** : couplage entre la production de biomasse et l’extraction (développement de procédés - innovants et/ou prototypes - couplés et hybrides comme les réacteurs membranaires ou les procédés de transformation de la matière couplés à des procédés de séparation innovants, développement produit, modélisation en vue d’intégration des opérations et de l’optimisation globale, mise en place de schémas de procédés adaptés aux microalgues et aux spécificités de ses acteurs industriels), développement analytique dédié aux cultures de microalgues (AFM, caractérisation et marquage cellulaire, dynamique et cinétiques de populations, analyses biochimiques, suivi de milieux), développements analytiques spécifiques (ex : méthode de suivi en ligne de l’état physiologique par fluorescence, de l’accumulation de composés d’intérêt dans des cultures de microalgues par spectroscopie RMN à bas champ magnétique, Raman…).

- **Poursuivre les efforts propres à la découverte et la maîtrise de la production de nouveaux produits d’usage** : sourcing dans les collections de souches sauvages (banques de souches nationales, internationales, ou privées) pour la découverte de nouveaux produits d’usage ou ingrédients algosourcés, développement de nouvelles approches de screening haut-débit combinées, compréhension de la physiologie des nouveaux modèles biologiques par des approches de micro-écophysiologie et des mécanismes gérant la plasticité métabolique de ces organismes au regard de la qualité des produits par des approches de métabolomique combinées (mesure et modélisation des voies métaboliques), développement de nouveaux capteurs pour la mesure de la qualité des produits dans les bioprocédés (méthodes enzymatiques miniaturisées hors ligne, RMN et Raman en ligne, …).

- **Renforcement des moyens de recherche, via le CPER (achats d’équipement de recherche) et la financement d’une extension de la plateforme AlgoSolis** (UMS CNRS 3722 - Directeur Jeremy Pruvost) pour le stockage et la sécurité (projet de 400k€ porté par l’Université de Nantes, avec un cofinancement FEDER et collectivités régionales).

- **Poursuite des thématiques propres à la production solaire de biomasse microalgale à grande échelle** : développement technologique et photobioréacteurs intensifiés, mise en œuvre solaire, développement d’outils théoriques dédiés de modélisation, de prédiction, de conduite optimale, implémentation pratique, validation et déploiement de ces outils dans des conditions réelles sur la Plateforme Algosolis.

- **Passage à l’échelle industrielle de procédés à fort potentiel** (et valorisation du portefeuille de brevets) : (i) photobioréacteurs à haute productivité volumique (technologies solaires et en lumière artificielle), (ii) réalisation de démonstrations pour la préparation de fractions microalgales à fonction d’usage.

- **Développement de la culture de microalgues sur effluents industriels (approche « waste to value »)** et intégration dans une optique d’écologie industrielle : valorisation du CO2 issu de fumées, utilisation de la chaleur fatale, culture sur effluents liquides pour le traitement des eaux, conception de photobioréacteurs intégrés au bâtiment, développement de nouveaux démonstrateurs pour la symbiose industrielle.
Produits et activités de recherche

Période de référence : 2016-2018

Equipe BAM

Journaux / Revues

Articles scientifiques

2018

17. Rui Zhang, Nabil Grimi, Luc Marchal, Eugene Vorobiev. Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri. Bioprocess and Biosystems Engineering, Springer Verlag, 2018, 〈10.1007/s00449-018-2010-4〉. (hal-01935801)

18. Rui Zhang, Olekssii Parniakov, Nabil Grimi, Nikolai Lebovka, Luc Marchal, et al.. Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp.. Bioprocess and Biosystems Engineering, Springer Verlag, 2018, 〈10.1007/s00449-018-2038-5〉. (hal-01935714)

2016

Engineering, American Chemical Society, 2016, 4 (6), pp.3133-3139. 〈10.1021/acssuschemeng.6b00151〉. 〈hal-01981583〉

44. J. JIN, C. DUPRÉ, J. LEGRAND, D. GRIZEAU. Extracellular hydrocarbon and intracellular lipid accumulation are related to nutrient-sufficient conditions in pH-controlled chemostat cultures of the microalga Botryococcus braunii SAG 30.81. Algal Research 17, 244-252. 2016. hal-01527232

Articles de synthèse / revues bibliographiques

2017

2016

Autres articles (articles publiés dans des revues professionnelles ou techniques, etc.)

2018
1. Jean-François Cornet, Catherine Creuly, Jeremi Dauchet, Claude-Gilles Dussap, Caroline Gentric, et al.. New generation photobioreactor characterization : photobioreactor advanced concept.. Technical Note 109.4, contract AO/1-7661/13/NL/R. 2018. 〈hal-01915599〉

2017

2016
Ouvrages

Direction et coordination d'ouvrages / édition scientifique

2018

Chapitres d'ouvrage

2018

2017

2016

Colloques / congrès, séminaires de recherche
Éditions d’actes de colloques / congrès

Articles publiés dans des actes de colloques / congrès
2018

2017

2016

2017

27. Thobie C., W. Blel, J. Pruvost, C. Gentric “Optimisation de l'hydrodynamique dans des
photobioréacteurs à haute productivité volumique pour éviter le développement de biofilm.
16ème Congrès de la Société Française de Génie des Procédés, Nancy, 11 - 13 juillet 2017

microalgae growth in photobioreactor, based on gas analysis”. Communication orale au 10ème
World Congress of Chemical Engineering (WCCE10/ECCE11/ECAB4), Barcelona (01-
05.10.2017) ⟨hal-01940735⟩

29. Urbain, B., G. Cogne, J. Legrand, M. Titica “Online estimation and feed-back control of
continuous photosynthetic microorganism growth”. Communication orale au 16ème Congrès
de la Société Française de Génie des Procédés, Nancy (11-13.07.2017), ⟨hal-01941261⟩

photobioreactor based on oxygen in situ measurements”. Communication orale au 6ème Congress of the International Society of Applied Phycology (ISAP 2017), Nantes (18-
23.06.2017).

31. Villafaña López, E. Clavijo Rivera, Shuli Liu, Patrick Bourseau, Estelle Couallier, et al.,
Shear-enhanced membrane filtration of synthetic microalgae lipids for applications in biorefinery.
ISAP, 2017, Nantes, France. ⟨hal-01896090⟩

32. Zinkoné R, Etude de la lyse de microalgues par broyage à billes, 16ème Congrès de la
Société Française de Génie des Procédés, 11-13 juillet 2017, Nancy, France 2016

operation under fluctuating light conditions”. Conférence orale à l’European Symposium on

34. Balti R., Ben Mansour M., Sayari N., Massé A., Bourseau P., Chemical characteristics and
potential biological activities of a novel sulfated polysaccharide isolated from blue-green
microalgae (Arthrospira Platensis), Congrès Oceanext, Risk and opportunities in marine and
coastal socio-ecosystems, 8-10 juin 2016, Nantes, France.

hydrolysat protéïque de spiruline : évaluation des propriétés antioxydantes et
antihypertensives in vitro, 7ème rencontre Biologie Physique du Grand Ouest, 23-24 juin
2016, Nantes, France,

36. Belgacem, I., A. Arabi ; Salhi, Y., Si-Ahmed E.-K, "On two-phase flow pressure drop
prediction using CFD modeling in horizontal pipe subjected to a sudden contraction : validaton “ CIEMEAP’16 Constantine 30-31 Octobre, 2016 par LEAP

37. Belgacem, I., S. Latreche ; Si-Ahmed E.-K, J. Legrand « New approch for the evaluation of
the aorta stenosis » The 66th Canadian Chemical Engineering Québec 17 octobre 2016.

38. Belgacem, I., Si-Ahmed E.-K, J. Legrand CFD Modeling of Oil-water Annular Flow across a
Sudden Contraction in Horizontal Circular Pipe. The 66th Canadian Chemical Engineering
Québec 17 octobre 2016

de micro-algues par procédés membranaires, CNRIUT 2016, Congrès national de la
recherche des IUT, 8-9 juin 2016, Nantes, France,

40. Chadenas, C., E. Chauveau and E. Couallier (2016). Geographical analysis for the
integration of a microalgae production and biorefining unit in “Pays de la Loire”.
Interdisciplinary conference OCEANEXT, Nantes.

Couallier, Characterization of the lipid fraction of grinded stressed p. Chlorella Kessleri and
formulation of a representative synthetic mixture, to initiate the study of lipids concentration by membrane filtration, OCEANEXT, Nantes, 8-10 juin 2016.

43. DE LUCAS A., J. LEGRAND, F. LE BORGNE, D. GRIZEAU, C. DUPRE. 2016. Utilisation de données spectroscopiques in vivo pour des criblages physiologiques ; application à la synthèse d’astaxanthine par des cultures de microalgues. 7èmes Rencontres Biologie Physique du Grand Ouest RBPGO, June 23th to 24th Nantes, France.

44. Gonçalves O., Analyse qualitative et quantitative du métabolisme des microalgues, Conférencier invité, GdR CNRS 3071 - 6ième école thématique en Génie des Procédés - « Ingénierie des biosystèmes : de la cellule au procédé » (2016) 29 mars au 1ere avril - Saint-Nazaire, France

45. Gonçalves O., Nouveau défi à relever par Algosolis : production et bioraffinage de la biomasse de microalgues à grande échelle, Conférencier invité - conférence plénière de clôture de la journée, 9ième Forum Gen2Bio (2016) 31 mars - Saint-Brieuc, France

53. Marchal L., SOME INSIGHTS IN CENTRIFUGAL PARTITION CHROMATOGRAPHY ENGINEERING - APPLICATION TO ALKALOIDS SEPARATION AT PRODUCTION SCALE”, 16ième SPICA, Vienna, Austria - October 9-12, 2016

55. Maureen Deniel, Maya Puspita, Philippe Douzenel, Olivier Goncalves, Valérie Stiger-Pouvreau, Nathalie Bourgougnon, Gilles Bedoux, and Laurent Vandanjon, Determination of the biochemical composition of proliferative macroalgae by IR spectrometry, Oceanext (2016) - 8, 9, 10 juin cité des congrès de Nantes - Nantes, France.

59. Phélippé M., Gérald Thouand, Guillaume Cogne, Olivier Gonçalves, The GCMS characterization of the central carbon metabolism of Arthrospira platensis brings insights to its original polysaccharide composition when submitted to various culture conditions, ESBES (2016) 11-14 sept - Dublin, Irlande

60. Phélippé M., Gérald Thouand, Guillaume Cogne, Olivier Gonçalves, Influence of culture conditions on EPS biosynthesis in Arthrospira platensis, JS de l’université de Nantes - Colloque EXOPOLYSACCHARIDES MARINS ET BIOTECHNOLOGIES BLEUES EXOBIO (2016) 10 juin - Nantes, France

61. Phélippé M., Gérald Thouand, Guillaume Cogne, Olivier Gonçalves, The GCMS characterization of the central carbon metabolism of Arthrospira platensis brings insights to its original polysaccharide composition when submitted to various culture conditions. (flash com), 10JS RFMF (2016) 31 mai-2 juin - Montpellier, France

64. Pruvost J., P. Jaouen, J. Legrand, O. Gonçalves and V. Montalescot, AlgoSolis: A New Facility For The Bioproduction And Refinery Of Microalgae, Cosmetic Ingredients and biotechnology - COSM’1ING 2016 - 29 juin au 1er juillet 2016 - Saint-Malo - France

65. Sabiri N.-E., Massé A., Amzil Z., Bourseau P., Jaouen P., Performances of a seawater desalination plant made up of a sand filter, ultrafiltration and reverse osmosis membranes during a planktonic bloom, Congrès Oceanext, Risk and opportunities in marine and coastal socio-ecosystems, 8-10 juin 2016, Nantes, France

Conférences par affiches

2018

2. Coat R., E Martineau, P Giraudou, A Arhalias, O Gonçalves, Microbiological alteration of egg products during their production process: chzracterisation of metabolic pathways and discovery of early prediction biomarkers, Euromar 2018, Nantes, 1-5 juillet, France

4. Couallier E., Shuli Liu, Erika Clavijo Rivera, Liliana Villafana Lopes, Patrick Bourseau, Matthieu Frappart, Membrane filtration for the recovery of lipids from microalgae extracts, AlgaeEurope 2018, Amsterdam, Hollande

6. Heredia Vladimir, Cueff Marie, Herve Laura, Marchal Luc, Pruvost Jeremy, Gonçalves Olivier, Microalgal solar culture influence on final lipid recovery: DoE approach, AlgaeEurope, Amsterdam, 4-6 décembre 2018, Pays-bas.

7. Phélippé M., Gérald Thouand, Guillaume Cogne, Olivier Gonçalves, The characterization of the central carbon metabolism of Arthrospira platensis brings insights to its original exopolysaccharide composition, AlgaeEurope, Amsterdam, 4-6 décembre 2018, Pays-bas.

2017

membrane fouled by an emulsion modelling lipids issued from microalgae (poster) », ICOM, San Francisco, USA

43. Larbi Z.; Sadoun N.; B. Sobac ;A.Reidmikov ;P. Colinet ; B.Haut ;E.K.Si-Ahmed «Evaporation d’une goutte liquide suspendu dans un milieu semi-fin » JSP20, USTHB, 26-27 Avril 2016.

44. Phélippé M., Gérald Thouand, Guillaume Cogne, Olivier Goncalves, GCMS characterization of the central carbon metabolism of Arthrospira platensis brings insights to its original exopolysaccharide composition when submitted to various culture conditions, 10JS RFMF, Montpellier, 31 mai-2 juin (2016).

Brevets, licences et déclarations d’invention

Brevets acceptés

Contrats de recherche financés par des institutions publiques ou caritatives

Contrats européens (ERC, H2020, etc.) et internationaux

- FP7-ITN ACCLIPHOT “Environmental Acclimation of Photosynthesis” (2012-2016, coordinateur O. EBENHOEH)
- IBISBA, Industrial Biotechnology Innovation and Synthetic Biology, Regroupement de plateformes de biotechnologies européennes (dont ALGOSOLIS), (coordination Mickael O’Donohue), 2017-2021.

Contrats nationaux

- Programme ANR ORAMA, Suivi en ligne de la production algale dans un bioréacteur, (coordination GEPEA) 2018-2021 - interaxes BAM (axe Bioressource), TEAM (axe Ecotechnologies)
- Programme CIMENTALG, Production de biomasse algale sur des fumées issues de cimenteries (coordination : VICAT), 2018-2021.
- Programme ANR Photoalkane, Production biologique d’hydrocarbures basée sur une nouvelle photoenzyme (coordination CEA Cadarache) 2018-2021
- Programme ANR IChemAlgae, Profilage chimique de micro-algues : une étape nécessaire dans l’exploration de la chemodiversité et le développement des biotechnologies bleues (coordination ICMR) 2017-2020
- Pari Scientifique région pays de la Loire, AMER-METAL, Analyse Multi-Echelle par Résonance magnétique nucléaire du METabolisme des micro-ALgues pour la production de biocarburants (coordination CEISAM) 2017-2020
- Mission Interdisciplinarité du CNRS (osez l’interdisciplinarité), RMN-(ME)2-TAL**, La Résonance Magnétique Nucléaire Multi-Echelle pour mieux comprendre le METabolisme des micro-ALgues (coordination CEISAM) 2017-2019
- ADEME Cofinancement de thèse de Shuli LIU, (1/2 bourse de thèse), Fractionnement de biomolécules issues de microalgues par filtration membranaire : Impact du milieu complexe sur les performances du procédé, Porteur : Estelle Couallier (CR CNRS GEPEA), 2017-2020

- Programme ANR EPIC « encapsulation par traversée d'interface » (coordination INP Toulouse) 2016-2020
- Programme ADEME ALGOSTEP, Production de biomasse algale sur des eaux de station d'épuration (coordination : GLS), 2016-2019.
- Mission interdisciplinaire CNRS énergie - Projets fédérateurs - Algues-Molécules-Territoire, (Bourse de thèse de Erika Clavijo +60K€), Bioraffinage de microalgues pour la production de biocarburant de troisième génération: étude multiéchelle, de la molécule au territoire, Porteur : Estelle Couallier (CR CNRS GEPEA), 2014-2017
- Programme ANR POLYSALGUE, Criblage, Identification et mise en œuvre de polysaccharides de micro-algues comme actifs biologiques et hydrocolloïdes (coordination IP) 2015-2019
- Programme ANR CHLOROPATH, Production in vivo et in silico de mutants affectant les voies de la photosynthèse (coordinateur CEA Cadarache) 2014-2017
- Programme ANR X-PC, intensification de réactions et purifications par procédés centrifuges liquide-liquide (coordinateur GEPEA) 2012-2016
- Dynamique Scientifique (Région pays de la Loire) AMI, Atlantic Microalgae - Pôle Microalgues de la Région Pays de la Loire (coordination GEPEA) 2015-2020
- Projet inter-région Bretagne et Pays de la Loire AltoVop, ALeTeration microbiologique des ovoproduits : « impacts biochimiques, fonctionnels et recherche de marqueurs precoces» (coordination ADRIA développement) 2014-2018 - interéquipe BAM, MAPS2
- Programme FUI SYMBIO2, Système innovant intégré et hybride de production de micro-algues par symbiose avec les bâtiments industriels et urbains (coordination : XtU/Algosource), 2013-2018.

Contrats avec les collectivités territoriales

- Université Bretagne Loire, 6 mois de post-doc, « Fractionnement de broyats de microalgues riches en triglycérides par procédés membranaires: mise au point de méthodes de caractérisation physico-chimique du Colmatage par les Lipides et les PROtéines des Membranes de filtration. » (COLIPROM), Porteur : Estelle Couallier (CR CNRS GEPEA) et Anthony Szymczyk (PR Université de Rennes 1), 2018
- Cofinancement de thèse de Shuli LIU, Région Pays de la Loire (1/2 bourse de thèse), Fractionnement de biomolécules issues de microalgues par filtration membranaire : Impact du milieu complexe sur les performances du procédé, Porteur : Estelle Couallier (CR CNRS GEPEA), 2017-2020
- AAP EUROPOLE MER : MACCLIME « Fractionnement de broyats de MicroAlgues riches en triglycérides par procédés membranaires: mise au point de méthodes de caractérisation physico-chimique du Colmatage par les Lipides des MEmbranes de filtration ». 12K€,
Porteur : Estelle Couallier (CR CNRS GEPEA) et Anthony Szymczyk (PR Université de Rennes 1), 2016
- Cofinancement du projet CNRS Algues-Molécules-Territoire, Institut Universitaire Mer et Littoral (IUML) (4,5K€), Intégration en zone littorale d’une unité industrielle basée sur la culture et le bioraffinage de microalgues, Porteur : Estelle Couallier (CR CNRS GEPEA), 2015-2016

Contrats financés dans le cadre du PIA

Contrats financés par des associations caritatives et des fondations (ARC, FMR, FRM, etc.)

Interactions avec les acteurs socio-économiques
Contrats de R&D avec des industriels
- Contrats de prestation avec NDA pour IMUNRISE, Suez, Segula, Gilson, Rousselet-Robatel, Sanofi, Minakem, AlgoSource Tecnologies, ENGIE, Total, Arkema
- Contrat avec Sara (Société Anonyme de la Raffinerie des Antilles). « Production de biocarburants à partir de microalgues cultivées sur sur des effluents de vaporeformages » 2016-6 mois et 2018-6 mois (coordination GEPEA).

Bourses Cifre
- Contrat d’accompagnement avec CODIF pour la thèse de Mr Philippe Mousson, 2016-2019.

Créations de laboratoires communs avec une / des entreprise(s)

Créations d’entreprises, de start-up
- Fevrier 2016, Création de la Business Unit « CPC Engineering » - Capacités SAS
- Participation à la gouvernance de Fédération de Recherche, Pôles de compétitivité, Institutions
- Comité directeur de la FR 3473 IUML (P. Jaouen) depuis Janvier 2017, rédaction et présentation du bilan 2012-2016 devant le HCERES
- CA et Bureau (VP) du Pole de compétitivité Pole Mer Bretagne Atlantique (P. Jaouen), contribution à la rédaction de la phase 4 des pôles de compétitivité
- Présidence du CST de la SFGP (J. Legrand)
- CA de la SFGP (L Le Coq, P. Jaouen)
- Participation au CA de l’Université de Nantes (P. Jaouen)
- Contribution à la rédaction du projet I-Site NExT PIA (P. Jaouen, J. Legrand)
Organisation de colloques / congrès
- SFGP 2019, XVIème Congrès de la Société Française de Génie des Procédés, Nantes, 15-17 octobre 2019 (Organisateur GEPEA)
- Mempro 6 Intégration des membranes dans les procédés, Saint-Malo, 7-9 juin 2017. Colloque coorganisé par STLO (UMR 1253 INRA AGROCAMPUS OUEST), ISCR (UMR 6226 CNRS) et GEPEA.
- Première journée thématique du CCOA sur la préparation d’échantillons. 16 octobre 2018 - CEISAM - Université de Nantes.
- Colloque ExoBio (Exo polysaccharides marins) - JS de l’université de Nantes - 10 juin 2016
- 6ième congrès ISAP 2017 « International Society for Applied Phycology » 18-23 juin - Nantes - France. (Organisateur GEPEA, 700 participants, 45 pays)
- 18ème International Conferences on Harmful Algae (ICHA), 2018, Cité des congrès NANTES (membre du comité d’organisation)
- 8èmes Rencontres de Biologie-Physique du Grand Ouest (RGPBO) 2018, UBS-Vannes-Campus de Tohannic, les 27-28 septembre 2018
- La Mer XXL 2019, Exposition Universelle, GEPEA membre du Comité d'experts

Activités éditoriales
Participation à des comités éditoriaux (jouanux scientifiques, revues, collections, etc)
- Bioresource Technology, J Chromatography A, Applied Physiology
- Jeremy Pruvost est Editeur Associé d’Algal Research
- Jeremy Pruvost est Expert Scientifique pour les Techniques de l'Ingénieur (Chimie Verte)

Direction de collections et de séries

Indices de reconnaissance
Prix
- Prix « collaboratif » pour le GEPEA, Pôle Mer Bretagne Atlantique, 2016

Distinctions

Appartenance à l'IUF

Responsabilités dans des sociétés savantes
- Coordination de la section régionale OUEST de la SFGP (Société Française de Génie des Procédés) depuis 2011 (P. Bourseau)
Invitations à des colloques / congrès à l’étranger

- Luc Marchal, BİOКET (Strasbourg), “Extraction and purification of metabolites in Biotechnologies by Centrifugal Partition Chromatography” 2018
- Luc Marchal, invité Journée Extraction SFR Condorcet (Amiens) « Chromatographie de Partage Centrifuge : Développement d'outils, de méthodes, et changement d'échelle - applications en DownStream Processing » 2018
- Luc Marchal, SPICA (Darmstadt), « Continuous CPC: Using a mass transfer model for process optimization and various mode comparison” 2018
- Luc Marchal, invité AFSEP (Nantes), “Chromatographie de Partage Centrifuge : Utilisations en chimie analytique et biomolécules » 2018
- J. PRUVOST, J. LEGRAND « Solar photobioreactor engineering: AlgoFilm technology and building facade integration”. Conférence invitée à l’Université Flinders, Adélaïde (07.05.2018).
- J. LEGRAND “ Production d’énergie à partir de la biomasse “. Conférence plénière aux 18èmes Journées Internationales de Thermique (JITh 2017), Monastir, Tunisie (24-27.10.2017).
- PRUVOST J., Le potentiel des microalgues dans l'industrie de demain, 19/11/16, Lille, France
- J. LEGRAND, « Biomasse : bioénergie et bioraffinerie ». Conférence invitée à l'Université de Ibn Tofail, Kénitra, Maroc (05.03.2016).
- J. LEGRAND, J. PRUVOST, “Some insights on photobioreaction engineering”. Conférence invitée au MELiSSA Workshop of European Space Agency (ESA), Lausanne, 08-09.06.2016.

Produits destinés au grand public

Communication institutionnelle :
- Création d’une page LinkedIn GEPEA, https://www.linkedin.com/company/gepea-cnrs/
- Création d’un compte twitter officiel GEPEA, https://twitter.com/LaboGEPEA

Emissions radio, TV, presse écrite
- Reportage pour la télévision Coréenne « Plateforme Algosolis », chaine KBS - 4-5 décembre 2018.
- Article dans Le Parisien Week-End « les chercheurs d’or vert », p19-20, 18 mai 2018.
- J.PRUVOST, Intervention au Forum du CNRS à Lille sur le thème « Le potentiel des microalgues », 18/11/16, Lille.
- J.PRUVOST, Intervention à Climate Chance sur le thème « Ecologie industrielle et microalgues », 27/9/16, Nantes.
- Réalisation de supports vidéo pour le Ministère de l’Education à l’attention des lycées sur les métiers de la recherche, 2016.

Produits de vulgarisation : articles, interviews, éditions, vidéos, DCSTI, etc.
- Aide aux TPE des lycéens (x4), 2016-2017
- Visites ALGOSOLIS (entre 15 et 25 par an)
 o 2017
 ▪ Étudiants (PeIP, Prépa physique chimie SN)
 ▪ Institutionnels (CESER atlantique ; F. Moncany de Saint-Aignan / services du premier ministre sur les questions de "croissance bleue" ; S. Houel, B. de Castelbajac, C. Choblet, F. Bellamy / Région PdL ;)
 ▪ Acteurs économiques (Rotary club de Nantes)
 o 2018
 ▪ Étudiants (PeIP ; Prépa physique chimie SN ; TPE ; CESI ; GBP)
 ▪ Institutionnels (ADDRN ; Lucie Trulla, cheffe de service au Grand Port Nantes Saint-Nazaire ; DDTM 44 / Délégation à la mer et au littoral ; Association Loire Océane Environnement ; délégation de "Nantes Expo La Beaujoire" ; Association Loire Océane Environnement ; RFI ; Ministère Agriculture- mission CGAAER)
 ▪ Acteurs économiques (Délégation de la "NantesTech" + VP université ; Spiruliniens et producteurs de microalgues ; Comité bassin d'emploi)
 ▪ Industriel (EDF ; immunrise)
 ▪ Grand public (Visite découverte A. Morvan ; CPIELO)

Débats science et société
- Participation aux CESERs de l'Atlantique (2017), croissance bleue (P. Jaouen), Rapport, Débat public
- Participation / animation atelier Biotechnologies marines, Assemblée régionale Mer et Littoral (Région des Pays de la Loire) P. Jaouen 2018, Rapport, Débat public
- Participation au Défi Littoral, Département de Loire Atlantique (Volet Bioressources Marines), Rapport, Débat public

Thèses soutenues
- **Hareb Al Jabri** (Bourse Université du Qatar) : Investigation and optimization of microalgae production in extreme desert conditions (début 12/2014). Directeur : Jeremy Pruvost (40%) Co-Directeur : Vincent Goetz (30% - UPR PROMES) Co-Encadrant : François Le Borgne (30% - AlgoSource Technologies), soutenue le 11 décembre 2018, Enseignant Chercheur à l'Université du Qatar.
- **Alexandra Busnel** « Etude du potentiel de la cyanobactérie Aphanizomenon flos-aquae pour des applications alimentaires » Cofinancement Université de Nantes - AST, début 10/2015, soutenue le 16/11/2018, Directeur : Jeremy Pruvost (40%), Co-encadrants : Sébastien Jubeau (30 %), Arnaud Artu (30%, AlgoSource), Catherine Dupré

- Charlène Thobie « Etude et modélisation de l’hydrodynamique et des transferts gaz-liquide dans un photobioréacteur à haute productivité volumique », début 01/10/2014, Directeurs: C. Gentic (40%), J. Pruvost (30%), Co-encadrant : W. Blel (30%), soutenue le 17 avril 2018, situation actuelle : Ingénieur de recherche Brochier Technologies

- Myriam Phélipé « Caractérisation des flux de carbones impliqués dans la biosynthèse des EPS de la cyanobactérie Arthrospira platensis PCC 8005 cultivée en PBR ». Débutée en Octobre 2013 financement MESR. Directeurs: Gérald Thouand (40%), Co-encadrant : Olivier Gonçalves (30%), Guillaume Cogne (30%),Soutenance effectuée le 15 septembre 2017. Cadre de Recherche Cooperl (CDI)

HDR soutenues
- **Olivier GONÇALVES**, « Stratégies intégrées de mesure pour la compréhension du métabolisme des micro-organismes. Vers des applications pour le génie des photobioprocédés : du métabolome au procédome, le 01 octobre 2018 à Saint-Nazaire
Equipe MAPS²
« Matrices/ Aliments/ Procédés/ Propriétés/ Structure – Sensoriel »

Co-responsables : Sylvie Chevallier (ONIRIS) et Eric Leroy (CNRS)

Présentation de l’équipe

<table>
<thead>
<tr>
<th>Chercheurs et enseignants chercheurs permanents</th>
<th>Personnel technique (non administratif)</th>
<th>Doctorants</th>
<th>Post-Doctorants</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>12 *</td>
<td>29</td>
<td>7</td>
</tr>
</tbody>
</table>

Chercheurs et enseignants-chercheurs permanents

- Abdellah ARHALIASS PR, Université de Nantes
- Clément CATA NEO MCF, ONIRIS
- Sylvie CHEVALLIER IR-HDR, ONIRIS
- Gaël COLOMINES MCF, Université de Nantes (à 50% avec l’équipe OSE)
- Rémi DETERRE PR, Université de Nantes (à 50% avec l’équipe OSE)
- Joëlle GRUA MCF, ONIRIS
- Vanessa JURY MCF, ONIRIS
- Marie de LAMBALLERIE PR, ONIRIS
- Alain LE BAIL PR, ONIRIS
- Eric LEROY CR-HDR, CNRS
- Laurent LETHUAULT MCF, ONIRIS
- Catherine LOISEL MCF, ONIRIS
- Jean-Yves MONTEAU MCF-HDR, ONIRIS
- Agnès MONTILLET PR, Université de Nantes
- Bernard ONNO MCF, ONIRIS (jusqu’au 30/10/2018)
- Denis PONCELET PR, ONIRIS (jusqu’au 30/09/2018)
- Laurence POTTIER MCF, ONIRIS
- Carole PROST PR, ONIRIS
- Cécile RANNOU IR, ONIRIS
- Thierry SEROT PR, ONIRIS
- Florence TEXIER MCF, ONIRIS
- Angélique VILLIERE IR, ONIRIS
Chercheurs et enseignants-chercheurs non permanents

Emilie KORBEL MCF Contractuelle, ONIRIS
Anne-Eve NORWOOD MCF Contractuelle, ONIRIS (arrivée au 01/01/2019)

Personnel technique permanent*
(*) Les 12 personnels techniques d’ONIRIS et de l’IUT de l’Université de Nantes ci-dessous ont participé aux activités des équipes OSE et/ou MAPS² durant la période. Néanmoins, il n’y a pas de personnel technique spécifiquement affecté à l’une des deux équipes excepté les ingénieurs de recherche (3 personnes dans MAPS²) assimilés aux chercheurs et enseignants chercheurs.

Patricia CORBIERE TFR, ONIRIS
Christophe COUEDEL TFR, ONIRIS
Daniel COUEDEL IR, Capacité
Catherine FILLONNEAU TFR, ONIRIS
Luc GUIHARD IE, ONIRIS
Claire GUYON IE, ONIRIS
Julien LAUNAY IR, Capacité
Yannick MADEC IE, Université de Nantes
Cécile MARZIN TFR, ONIRIS
Michelle MOREAU TFR, ONIRIS
Anthony OGE IE, ONIRIS
Delphine QUEVEAU AI, ONIRIS

Personnels techniques non permanents (MAPS²)

Guénaëlle DILER IR, ONIRIS
Sophie LAURENT IR, ONIRIS
Eloïse RIBETTE IR, ONIRIS
Marion ARDANUY IR, ONIRIS (jusqu’au 27/07/2018)
Sanna GHAMRI IR, ONIRIS (jusqu’au 27/07/2018)

Doctorants
29 sur la période (dont 18 Thèses en cours)
NB : Certains doctorants sont co-dirigés/co-encadrés par des membres d’autres équipes.

3. BAILHACHE Chloé "Optimisation de la formulation et des conditions de procédés des produits de type crackers en vue d’en maîtriser la stabilité mécanique". Début 02/2016.
Financement CIFRE avec Frandex. Directeur de thèse : Alain Le Bail, co-directrice de thèse : Patricia Le Bail (INRA, UR1268 BIA, Nantes).

Post-doctorants et chercheurs seniors accueillis

Post-doctorants

Chercheurs seniors accueillis

Politique scientifique

Missions et objectifs scientifiques

L'équipe « Matrices/ Aliments/ Procédés/ Propriétés/ Structure – Sensoriel » : MAPS² est issue de l'ancien axe de recherche du même nom. Néanmoins, ce passage d'un axe définissant une simple trajectoire commune à une véritable équipe est en soi un défi important du fait de la diversité de l'équipe. Le collectif est en effet fortement pluridisciplinaire avec des chercheurs et ingénieurs dont les travaux trouvent leur application dans des filières diverses (agroalimentaire en majorité, matériaux polymères, mais aussi cosmétique ...). C'est aussi une équipe multi-sites (site ONIRIS à Nantes et sites UN à Carquefou et Saint Nazaire).

Le point de convergence se situe dans notre démarche commune s'articulant autour de deux « néo-disciplines » issues du Génie des Procédés :

- La physico-chimie des procédés : C'est-à-dire caractériser et comprendre ce qui se passe de l'échelle moléculaire au macroscopique.
- L'Ingénierie du produit : C'est-à-dire maîtriser la production des produits en intégrant leurs propriétés d'usage et leur cycle de vie.

Cette approche multi-échelle « procédés-processus-produit », est rendue possible par une large gamme d'équipements analytiques, par des infrastructures pilotes : Une plate-forme génie des procédés agroalimentaires et sciences des aliments (sur le site d'ONIRIS) et une halle technologique de mise en forme et de caractérisation des matériaux polymères (sur le site de l'IUT de Nantes). Ces moyens sont complétés par un partenariat privilégié avec l'INRA de Nantes dans le cadre de la Structure Fédérative de Recherche IBSM 4202 (Ingénierie des Biopolymères pour la Structuration des Matrices et Matériaux).

Orientations scientifiques et choix stratégiques

Dans le cadre des problématiques actuelles de la reformulation et de l'ouverture à de nouvelles matières premières, il s'agit d'optimiser les produits, leurs fonctionnalités et leur cycle de vie à travers une approche procédé basée sur l'adaptation des procédés existants et le développement de procédés innovants. On peut évoquer ici le cas de la reformulation des aliments qui est devenue un sujet identifié au niveau européen avec l'évolution vers le « clean label » (suppression des améliorants), l'intégration de matières premières innovantes (de nouvelles sources de protéines) et également les matériaux avec l'intégration de matières premières biosourcées ou issues du recyclage. Les interactions procédés – structures – propriétés sont étudiées à différentes échelles (du moléculaire au microscopique) caractéristiques des phénomènes mis en jeu dans la structuration ou la déstructuration des matrices (réactions, changements de phase, structures alvéolaires) en développant des techniques de caractérisation et de modélisation multi-échelles adaptées.

Dans le cadre du projet quinquennal actuel, cette démarche est appliquée à 3 familles de procédés sur lesquelles les forces de l'équipe sont réparties :

- Les procédés thermiques et thermomécaniques sont principalement étudiés dans le but de maîtriser la structuration des matrices. Pour les procédés thermiques, il s'agit en particulier des procédés de cuisson dans le domaine alimentaire (panification) et des matériaux élastomères (vulcanisation), mais aussi des procédés de congélation. On peut identifier une problématique sur des procédés thermiques rapides comme le chauffage ohmique, le procédé micro-ondes ou la cuisson de produits de petite taille. L'étude de l'influence de champs électriques ou électromagnétiques sur les changements de phase est un domaine en fort développement au GEPEA depuis 2008. La congélation assistée par micro-ondes permet de réduire la taille des cristaux de glace et d'améliorer la qualité finale des produits. Un résultat récent concerne la compréhension du mode d'action des microondes avec la mise en évidence de l'intérêt du mode pulsé par rapport au mode puissance constante. (Figure 1). Cependant, le mécanisme mis en jeu n'est pas encore totalement élucidé.
Pour les procédés thermomécaniques, il s’agit de l’extrusion bivis, avec la problématique croissante de la « reformulation » (sourcing, additifs), du pétrissage (LABCOM MIXI-LAB), mais aussi de procédés émergents de fabrication additive qui en dérivent tels que l'impression 3D. Ces orientations stratégiques concernent à la fois les applications matériaux (prototypage, …) et alimentaires. Les applications alimentaires qui font l'objet d'une forte veille industrielle, concernent par exemple le développement d'aliments pour publics ciblés (personnes âgées, …), la personnalisation des aliments (marquage, ajout de compléments nutritionnels), la fonctionnalisation par la structuration (modulation du sucré, du salé, de la saveur et des arômes, …). Une première thèse démarrée en octobre 2015 dans le cadre d’IBSM vise à mettre en œuvre une protéine de maïs, la zéine, par le procédé de dépôt de fil fondu (Fused deposition modelling, FDM) en tirant parti de son comportement rhéologique, proche de celui des polymères synthétiques de référence pour ce procédé d'impression 3D (Figure 2). Plus récemment, une collaboration avec OSE vise à un contrôle thermique de la buse d’impression par chauffage ohmique (Thèse de M. Khodeir). Egalement un postdoc commencé en novembre 2018 sur le traitement physique d’amidons pour concevoir des gels d’impression 3D (Bianca Chieregato – collaboration. USP-Brésil, cofinancée par le programme Régional « Food for Tomorrow »).

La figure 2, ci-contre permet de comparer la viscosité dynamique de la zéine plastifiée par le glycérol à 130°C, à celle des polymères standards habituellement utilisés pour le procédé FDM : l’ABS (mis en œuvre entre 230 et 270°C suivant les grades) et le PLA (mis en œuvre vers 190°C). Dans la gamme de fréquences/vitesses de cisaillement mises en jeu en FDM, la viscosité de la protéine plastifiée est intermédiaire entre celles des matériaux de référence. (Thèse de L. Chaunier)

Parallèlement, un nombre croissant de projets mobilisant les compétences des équipes MAPS² et OSE, concerne des procédés de dégradation contrôlée des matrices. Il peut s’agir de matrices naturelles (avec le procédé de liquéfaction hydrothermale appliquée à la déstructuration de la biomasse micro-algale dans le cadre du projet ANR « ALGOROUTE » pour la production de biobitumes) ou de matrices industrielles (cas du recyclage du caoutchouc par dé-vulcanisation thermomécanique étudié dans projet BPI « ECOTHER »).

- Les procédés athermiques regroupent les procédés hautes pressions, les procédés multiphasiques (émulsification, foisonnement). Les problématiques traitées par les procédés hautes pressions sont la formulation, par les possibilités de texturation sans additif et d’enrichissement en protéines qu’ils permettent, d’une part, et la biopréservation combinée au développement de propriétés technologiques et sensorielles susceptibles d’être obtenues par ces procédés, d’autre part. La figure 3 illustre cette approche développée dans le projet
ANR BlacHP, sur un procédé innovant de stabilisation du jambon cuit combinant hautes pressions et biopréservation à l’aide de bactéries lactiques.

La mise en commun, avec l’INRA dans le cadre d’IBSM, des procédés et des outils d’analyse en ligne sur un plateau technique dédié à l’étude des mousses est un atout majeur dans le développement des activités autour des procédés dispersion de phase. Les efforts actuels portent sur le foisonnement continu utilisant des systèmes miniaturisés de dimensions inférieures au millimètre, sous forme de 4 canaux carrés en croix, de 500 ou 600µm de côté, pour générer des mousses stables (figure 4). Le savoir-faire de l’équipe sur les procédés multiphasiques s’oriente vers l’utilisation de nouveaux émulsifiants biosourcés et notamment issus des micro-algues en collaboration avec l’équipe BAM de l’axe Procédés pour les Bioressources.

Parallèlement, la thématique émulsion mettant à profit des systèmes microfluidiques, déjà ancienne au laboratoire et développée en collaboration avec le LTEN depuis plusieurs années, a récemment donné lieu à un nouveau procédé breveté d’émulsification en continu avec des perspectives d’application en cosmétique (voir faits marquants).

Figure 3 : Effet du traitement combiné (HP/Bactéries lactiques) et de la durée de stockage sur le temps de demi-vie du jambon cuit au cours de la digestion gastrique. Le traitement combiné permet de maintenir la qualité globale du jambon cuit à teneur réduite en nitrites proche de celle du jambon cuit traditionnel, tout en assurant sa sécurité sanitaire. De plus, au cours du temps de stockage après le traitement, la vitesse de digestion du jambon cuit augmente ce qui est sans doute lié à l’activité protéolytique des bactéries lactiques.

Figure 4 : Plateau technique dédié à l’étude des mousses : Exemple du banc expérimental utilisé dans le projet régional IDFOAM (a) comportant le microsystème (b) alimenté en fluides (solution en bleu/azote en rouge). Visualisation des bulles (c) à l’intérieur des canaux et observation microscopique et macroscopique de la mousse (d) en sortie.
- Les procédés de « construction-déconstruction organoleptique » : L'analyse de la flaveur des aliments constitue un volet structurant qui permet de comprendre l'influence des procédés sur la formation des déterminants chimiques à l'origine de la réponse sensorielle. Les composés volatils et plus particulièrement odorants sont au cœur de la problématique. La libération de ces composés odorants et la perception sensorielle qui en découlent sont la résultante des propriétés du produit et de son comportement en bouche lors de la mastication. Un premier axe de recherche vise à caractériser les propriétés sensorielles susceptibles d’être impactées par les propriétés physiques ou chimiques de l’aliment lors de sa dégustation par le consommateur.

Figure 5 : Exemple d’utilisation de l’analyse chromatographique pour l’analyse des composés ororants dans le cadre du projet ANR Milkodor :
À gauche, le lait maternel est une source d’éléments nutritifs et protecteurs pour le nouveau-né qui impacte, sa croissance, son développement neurologique et sa santé à court et à long terme.
À droite, l’analyse chromatographique, mono et bidimensionnelle de laits maternels permet d’en révéler les composés clefs.

Un second axe de recherche vise à mettre en place des procédés d’extraction des composés volatils qui sont alors analysés par des techniques instrumentales de pointe telle que la chromatographie en phase gazeuse mono ou bidimensionnelle couplée à la spectrométrie de masse. Cette approche est développée dans le cadre de projets qui peuvent être éloignés du Génie de Procédés comme le projet ANR MILK ODOR (Figure 5) sur l’analyse les mécanismes sensoriels et comportementaux impliqués dans la communication précoce mère ↔ nouveau-né. Néanmoins, les connaissances et le savoir faire acquis viennent ensuite nourrir un troisième axe de recherche basé sur l’utilisation de l’olfactométrie (analyse sensorielle/analyse chimique) couplée à d’autres techniques instrumentales de détection, avec l’utilisation du prototype breveté de simulateur de mastication AMADEUS développé au laboratoire (figure 6).

La Figure 6 ci-contre illustre l’approche mise en œuvre dans le cadre du projet européen Brewspan pour déterminer les préférences des consommateurs et identifier les marqueurs de cette préférence : L’analyse sensorielle est combinée à différentes méthodes d’analyse instrumentales (simulateur de mastication, analyse d’image et analyse des composés volatils)
Analyse SWOT

L’analyse faite par le comité de visite HCERES lors de l’évaluation de l’équipe en 2016 nous semble tout à fait pertinente. Aussi nous en reprenons les points principaux et nous y ajoutons les points soulignés.

<table>
<thead>
<tr>
<th>Interne</th>
<th>Forces</th>
<th>Faiblesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Un collectif dynamique et équilibré</td>
<td>- Déséquilibre entre les sites et les domaines d’application (la majorité de l’effectif est concentré à ONIRIS, sur les applications agroalimentaires depuis la création de l’équipe OSE)</td>
</tr>
<tr>
<td></td>
<td>- Des compétences disciplinaires en génie des procédés positionnées de manière pertinente sur des domaines d’applications porteurs et complémentaires ;</td>
<td>- un risque de dispersion des approches scientifiques par la grande diversité des objets d’étude et un grand nombre de projets industriels notamment pour les applications alimentaires</td>
</tr>
<tr>
<td></td>
<td>- une plate-forme expérimentale riche et unique, avec des équipements pilotes instrumentés originaux et des équipements analytiques performants</td>
<td>- Départ en retraite de 2 permanents en 2018 (non encore remplacés)</td>
</tr>
<tr>
<td></td>
<td>- une bonne collaboration au sein de la fédération IBSM qui enrichit les compétences</td>
<td></td>
</tr>
<tr>
<td>Externe</td>
<td>Opportunités</td>
<td>Menaces</td>
</tr>
<tr>
<td></td>
<td>- La volonté d’une évolution de la structure IBSM vers une fédération Grand Ouest des laboratoires en science des aliments</td>
<td>- Un risque de multiplication des contrats courts dans la dynamique du CARNOT QUALIMENT qui ne concerne que les personnels ONIRIS.</td>
</tr>
<tr>
<td></td>
<td>- L’ISITE NEXT, notamment pour les développements de clusters de recherche (fabrication additive, agroalimentaire)</td>
<td>- Un risque de déséquilibre accrus vers les applications agroalimentaires avec l’évolution de la structure IBSM.</td>
</tr>
<tr>
<td></td>
<td>- L’institut CARNOT QUALIMENT pour le développement des contrats industriels et l’accès à des financements de thèses de ressourcement</td>
<td>- Risque de diminution des financements régionaux</td>
</tr>
</tbody>
</table>

Bilan général d’activité

L’analyse SWOT ci-dessus étant en grande partie issue des remarques du comité de visite HCERES, celles-ci ont été prises en compte avec les actions suivantes :

- **Mise en place d’une réflexion sur les candidatures ERC** : L’objectif à terme est d’accéder à des sources de financements permettant de limiter le recours aux contrats industriels et de développer des thématiques identifiées comme stratégiques. Une candidature ERC « Advanced Grants » a été déposée par Alain Le Bail en 2018 autour de la thématique des changements de phase sous champs électriques et électromagnétiques. Parallèlement, Vanessa Jury a obtenu un financement « étoile montante » de la Région des Pays de la Loire, devant déboucher sur une candidature ERC « Consolidator » dans les trois ans. Son projet (MAD-BIO) porte sur la structuration durable de matrices alimentaires par de nouvelles bioressources (insectes et micro-algues notamment).

- **Mise en place de séminaires internes et d’une réflexion stratégique** : Tous les doctorants de l’équipe ont présenté leurs travaux dans ces séminaires mensuels au cours des deux dernières années. L’objectif est maintenant de s’appuyer sur ce cadre d’animation.

- **Mise en place d’une stratégie sur la fabrication additive** : Parallèlement aux 2 thèses évoquées plus haut, dont l’une a donné lieu à un article dans le journal Additive manufacturing en 2018 cosignée avec des membres d’IBSM et OSE, un projet de cluster de recherche a été porté par Rémi Deterre en 2018 dans le cadre du premier appel à projet de l’ISITE NEXT. Ce projet auquel tous les laboratoires nantais intéressés par la thématique ont apporté leur soutien, place le GEPEA et les équipes MAPS² et OSE en position de leadership.

L’activité de publication reste stable avec une vingtaine d’articles dans des journaux internationaux à comité de lecture par an. Par ailleurs un grand nombre de projets industriels de courte durée qui apportent de la fluidité financière et ont permis de co-financer de plusieurs thèses (CAKERS, FOAM2-3D, PAIN B4 etc).

Parmi les projets clés sur la période, on peut citer :

- **Au niveau européen** :
 - Le projet Européen FREEZEWAVE déjà évoqué sur la congélation sous champs électromagnétiques arrive à son terme. Un congrès final a eu lieu à Nantes le 5 Nov 2018 (60 participants) avec les meilleurs experts mondiaux (Chine, Japon, Iran, Europe).
 - Projet Européen BrewSePan sur les produits de boulangerie enrichis innovants grâce à la valorisation de co-produits de l’industrie brassicole avait pour principal enjeu de déterminer l’impact des modifications de formulation sur la qualité organoleptique du pain (arôme, texture). Cette approche a également été l’occasion de se fédérer autour d’un programme COST avec 65 partenaires (40 nationalités) : COST-2018-SOURDOMiCs.

- **Au niveau national** :
 - Une des actions du projet BPI ECOTHER sur le recyclage du caoutchouc à mobilisé des compétences en rhéologie et caractérisation des réseaux élastomères (Thèse CIFRE de Rodrigo Diaz en collaboration avec le CEME F et la société REP).
 - Le projet ANR BLacHP déjà évoqué réunissait AgroSupDijon, ONIRIS (GEPEA et SECALIM), l’INRA, le CTCPA, l’IFIP, Hiperbaric, 5 degrés ouest, CHR HANSEN, et la Société Bio Valeur. La journée de restitution du projet du 20 novembre 2018, conjointe avec le RMT ACTIA FlorePro, a réuni 100 personnes.
 - Le projet ANR MILKODOR évoqué plus est toujours en cours. Il s’appuie sur une collaboration avec des chimistes (ICN - UMR CNRS-Université de Nice-Sophia-Antipolis), des éthologues (CSGA, UMR CNRS-INRA-Université de Bourgogne) et des statisticiens (Oniris Nantes - USC INRA 1124).

- **Au niveau régional et interrégional** :
 - Le projet MATIERES (11 laboratoires) a permis de continuer les travaux sur l’apport des liquides ioniques comme « processing aids » pour l’élaboartion de matériaux nanostructurés et flocionnels, avec 2 postdocs.
 - Le projet Recherche-Formation-Innovation RFI « Food For Tomorrow » a permis le financement de nombreuses thèses et postdocs dans l’équipe. Notamment le Projet
« IDFOAM » exploitant plateau technique dédié à l’étude des mousses évoqué plus haut (Thèse en cours de J. Sepulveda).

Faits marquants sur la période 2016-2018

- **Mise en place d’une plateforme « baking » à ONIRIS** : les projets collaboratifs et contrats liés aux produits céréaliers ont représenté pres de 40% du montant des contrats de MAPS depuis 2010. Une plateforme héberge ces projets avec divers équipements innovants tels divers micro-cuiseurs, deux cuiseurs de pain par chauffage ohmique (collab. OSE), divers mélangeurs etc. Parmis les faits marquants, le LABCOM MIXI-LAB qui arrive à son terme en fin 2018 avec un brevet et une poursuite sous forme de Consolidation avec accord cadre en vue.

- **Mise en place de nouvelles collaborations internationales** : IIFPT Inde-Ministère des procédés agroalimentaires depuis 2012, TU Munich (Financement France-Bavière en 2016), SP (Suède), Un PHC Dumont D’Urville avec l’Université de Canterburry en Nouvelle Zélande.

- **Mise en place de nouvelles collaborations industrielles** : de nombreuses collaborations portant sur les procédés de congélation (Bonduelle), produits céréaliers (St Michel-BONNE MAMAN, PATIS-France, EUROPE SNACK, JACQUET Panification, BN-PLADIS,
PASQUIER Biscottes, PASQUIER Patisserie, …), produits carnés (Fleury-Michon) ont été mises en places
- Piyush Kumar JHA a reçu le 3ème prix du meilleur étudiant de l’année au congrès EFFoST-2018 à Nantes.

Perspectives de l’équipe

Nous sommes bientôt à mi-parcours du contrat quinquennal actuel. Des tendances fortes se distinguent pour les années à venir :

- La poursuite du développement des procédés rapides intensifiés et de l’impact sur les propriétés d’usage. On retrouve dans les procédés les electrotechnologies (chauffage ohmique, microondes, changements de phases sous champs) développées conjointement avec l’équipe OSE, avec des possibilités d’application hors du domaine agroalimentaire et des procédés thermiques avec chauffage rapide (10 à 60°C/min, cuisson crackers, crêpes, tuiles, pain, cake-contrat RAPID 2019) qui ont un impact sur les propriétés d’usage.
- Un renforcement des interactions entre les procédés de panification/reformulation et de construction/ déconstruction sensorielles (projet Européen H2020 « SWEET », nombreux projets CIFRE, contrats et projets collaboratifs). Nous envisageons aussi d’explorer l’utilisation des outils chromatographie en phase gazeuse pour la caractérisation sensorielle de matériaux, dans le cadre du projet ANR en cours ALGOROUTE sur la production de biobitume à partir de résidus de microalgues.
- En termes de matières premières, les protéines (végétales, animales, issues d’insectes, issues des microalgues) font l’objet d’un nombre important de projets tant sur l’adaptation de procédés existants que sur le développement de procédés innovants. Cela concerne aussi bien les procédés thermomécaniques tels que l’extrusion, que les procédés athermiques. Dans le domaine des hautes pressions le Projet PATA CHON (Pressure Assisted Treatment Applied to proteins (CHON)) vise à exploiter l’effet des hautes pressions sur les protéines alimentaires animales et végétales. Dans le domaine du foisonnement, le projet VEGGIN vise à exploiter les Interactions protéines végétales – protéines de blanc d’œuf pour le développement d’ingrédients fonctionnalisés.

D’une manière générale, le fonctionnement par projets, issu de l’axe MAPS² et lié à la diversité des procédés mis en jeu, reste une caractéristique de l’équipe. C’est à la fois un point fort en termes de diversité des financements accessibles, et un risque en termes de dispersion. En vue du prochain contrat quinquennal, un travail de réflexion a été initié sur la stratégie scientifique à long terme par « famille de procédés ». Il devra être complété par une anticipation des profils pour les recrutements à venir, plusieurs membres de l’équipe étant susceptibles de partir en retraite dans les prochaines années. Ces recrutements permettront de renforcer les compétences sur les problématiques scientifiques porteuses historiques et émergentes (fabrication additive, transition protéique).
Produits et activités de recherche

Période de référence : 2016-2018

Equipe MAPS²

Journaux / Revues

Articles scientifiques

2018

2017

2016

65. Pottier L., Guyon C., Rakotondramavo A., Villamonte G., Arnaud C., De Lamballerie M.

Autres articles (articles publiés dans des revues professionnelles ou techniques, etc.)

2018

2016

Chapitres d’ouvrages

2018

2017

2016

Communications avec actes

2018

2017

2016

Communications sans actes

2018

of biosourced foams produced by microchannels at high throughput, , Annual European Rheology Conference 2018 (AERC 2018), 17 avril 2018, Sorrente (Italie).

2017

the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits., Colloquium Chemiometricum Mediterraneum, 27-30 juin 2017, Arles (France).

biosourced foams by microchannels at high throughput, Biopolymers 2017, 29 novembre 2017, Nantes (France).

2016

A dynamic approach to follow crust and crumb formation, Bruker Micro-CT User Meeting 2016, 9 mai 2016, Mondorf-les-Bains (Luxembourg).

Communications par affiches

2018

2. Bedas M., Le Bail P., Le Bail A.. A model system study to understand the water distribution, , 32nd EFFoST International Conference, Nantes (France).

5. Crucean D., Jonchère C., Pontoire B., Deucquet G., Le Bail A., Le Bail P. Vitamin B4 as a salt substitute in bread. Impact on saltiness and on additional interactions with starch during the bread making process, , 32nd EFFoST International Conference, Nantes (France).

11. Le Bail P., Monteau J.-Y., Le Bail A.. MW processing of bakery products to prevent checking & breakage; state of the art (BRICE project), , The 52nd Annual Microwave Power Symposium (IMPI 52), Long Beach (États-Unis).

yogurts, 32nd EFFoST International Conference Developing innovative food structures and functionalities through process and reformulation to satisfy consumer needs and expectations, Nantes (France).

17. Matullat I., Huen J., Xanthakis E., Eliasson L., Jha P. K., Le Bail A.. Sensory evaluation of potatoes, chicken meat, cod fish and emulsions after microwave-assisted freezing (FREEZEWAVE project), 32nd EFFoST International Conference, Nantes (France).

19. Prost C., Guilloux M., Catanéo C., Le Bail A., Le Thuaut L.. Optimisation of AMADEUS parameters to mimic food oral processing for assembled food application to regular and salt reduced pizzas, 32nd EFFoST International Conference, Nantes (France).

20. Rakotondрамаво A.-M., Guyon C., Rabesona H., Brou C., De Lamballerie M.. Digestibility of high-pressure processed cooked ham, 32nd EFFoST International Conference, Nantes (France).

22. Rannou C., Caroli L., Amouzou G., Lopez Torres L., Dalmas S., Prost C., Lethuaut L. Formulation of nutritional Spirulina foods: How to conciliate high level of whole Spirulina content and valuable flavor properties using aromatic masking ?, 32nd EFFoST International Conference Developing innovative food structures and functionalities through process and reformulation to satisfy consumer needs and expectations, Nantes (France).

23. Rannou C., Diler G., Choimet C., Fillonneau C., Catanéo C., Thebaudin J.-Y., Le Bail A., Prost C.. Reduction of salt, sugar and fat: How to improve the nutritional quality of organic soft bread while maintaining acceptability ?, 32nd EFFoST International Conference Developing innovative food structures and functionalities through process and reformulation to satisfy consumer needs and expectations, Nantes (France).

25. Villière A., Guillet F., Prost C.. Olfactometric process: new insights in automated acquisition and data treatment, 32nd EFFoST International Conference - Developing innovative food structures and functionalities through process and reformulation to satisfy consumer needs and expectations, Nantes (France).

2017

36. Jha P. K., Jury V., Le Bail A.. Innovative low energy microwave assisted freezing (MW-AF) permits to minimize freeze damage of fruits and vegetables; some results from FREEZEWAVE H2020 project, 31st EFFoST International Conference 2017, Sitges (Espagne).

37. Le Bail A., Fontaine J., Ribette Lancelot E., Della Valle D., Grua-Priol J., Cheio J. Bread dough
preparation in a mixer; impact of rotation speed and of energy on selected dough properties, , AACC International Annual Meeting, San Diego (États-Unis).

42. Le Roy S., Fillionneau C., Guichard H., Prost C.. Innovative aroma recombination approach applied to the comprehension of French cider fruity dimension, , In Vino Analytica Scientia (IVAS) symposium, Salamanca (France).

2016

57. Guyon C., Pottier L., Meynier A., De Lamballerie M.. Protein and lipid oxidationurized meat: a review, , Food Factory (FF), Laval (France).

60. Loisel C., Valle D. D., Riaublanc A., Montillet A.. Rheology of protein foams contained with phospholipids, , XVIIth International Congress on Rheology (ICR2016), Kyoto (Japon).

64. Roche A., Chabin T., Villiere A., Symoneaux R., Perrot N., Thomas-Danguin T. In silico modelling to predict the odor profile of red wines from their molecular composition using experts’ knowledge, fuzzy logic and optimization, 7th European Conference on Sensory and Consumer Research, Dijon (France).

Brevets, licences et déclarations d’invention

Brevets acceptés

Déclaration d’invention

Envelope Soleau
- ES1 - Production de l’acide 12-hydroxystéarique à partir de l’huile de ricin. Université de Nantes – Société Denis et Fils.
- ES2 – Extraction de la cire de feuilles de petits pois Université de Nantes – Société Denis et Fils.

Contrats de recherche financés par des institutions publiques ou caritatives

Contrats européens (ERC, H2020, etc.) et internationaux
Projets terminés sur la période
- BREWSPAN (C. Prost)
- FREEZEWAVE (A. Le Bail)
- PHC Dumont D’Urville en collaboration avec l’University of Canterburry, NZ (E. Leroy).

Projets en cours et à venir
- COST-2018-SOURDOMiCs (65 partenaires, 40 nationalités)
- H2020 « HYPERCOOK » 2019-2020 ; Cuisson – supervision visuel (A Le BAIL – petite participation)
Contrats nationaux

Projets terminés sur la période
- ANR BlacHP (ANR-14-CE20-0004) (M. de Lamballerie)
- BPI ECOTHER (R. Deterre)
- Projet ECONUTRICAKE 2015-2018 (A. Le Bail, C. Prost)
- Projet PAIN B4 ; thèse cofinancement Min. Agriculture (ID-For Food) (A. Le Bail)

Projets en cours et à venir
- ANR MILKODOR 2016-2020 (C. Prost)
- ANR ALGOROUTE 2016-2020 (G. Colomines, resp. WP)
- Programme AAP, attractivité Postdoctorale, Université Bretagne Loire (UBL), 2017, Fabrication in situ d’aliments aquacoles « Frais », focus sur un exemple d’une Plateforme Offshore Multi-Usage incorporant un usage Biomasse. (POMU), Cofinancement d’un postdoc UBL, départements mer et littoral (ML) et Agroécosystèmes et alimentation (AAL) - IFREMER, 2018 – 2019, en tant que porteur du programme.

Contrats avec les collectivités territoriales

Projets terminés sur la période
- Projet MATIERE 2014-2017 (E. Leroy, R Deterre)
- Projet SILVERNUT 2015-2018 (M. de Lamballerie)

Projets en cours et à venir
- Projet Avenir "Structuration de la filière insectes" (Valorial, FEDER) 2018-2020 (F. Fayolle, V. Jury)
- Projet PROFIL 2013-2019 (C. Prost)
- IDFOAM – thèse RFI (C. Loisel) ; procédés continu pour production de mousse
- Projet Etoile montante MADBIO 2018-2021 (V. Jury)
- Projet PostDoc RFI Région « Starch 3D » (A Le Bail) ; fonctionnalisation d’amidon pour impression 3D
- Projets FOAM2-3D ; thèse en cofinancement RFI Région (Co-financement MAPS). Direction OSE, codirection BIA et MAPS
Interactions avec les acteurs socio-économiques

Contrats de R&D avec des industriels

- Collaboration de recherche avec Prayon (B) 2015-2016 – « Impact des systèmes acidifiants de type phosphates, dans le cas de leur mise en œuvre pour des produits de types cake et génoise »
- Collaboration de recherche avec St Gobain, 2017-2018 : « Méthodologie de caractérisation d’un procédé de foisonnement rotor/stator ».
- Collaboration de recherche « PGV » avec JACQUET PANIFICATION 2016-2017 : alvéolation de pain de mie (10 mois)
- Collaboration de recherche « RAPID » avec PATIS-France 2018-2019 : cuisson rapide de produits céréaliers (12 mois)
- Collaboration de recherche « FROST » avec PATIS-France 2016-2017 : stockage et qualité de produits céréaliers surgelés (12 mois)
- Collaboration de recherche « CRUST » avec PATIS-France 2016-2017 : croute de produits céréaliers (9 mois)
- Collaboration de recherche « TEXDO » avec VMI 2016-2017 : texture de produits céréaliers (6 mois)
- Collaboration de recherche « PUFF » avec VMI 2018-2019 : capteur de texture de produits céréaliers (4 mois)
- Collaboration de recherche « RAPID » avec PATIS-France 2018-2019 : cuisson rapide de produits céréaliers (9 mois)
- Collaboration de recherche « QUASUR » avec BONDUELLE 2017-2018 : procédé de surgélation de légumes (12 mois)
- Collaboration de recherche « VAP » avec MECATHERM (collab. OSE) 2017-2018: vapeur dans four industriels (12 mois)
- Collaboration de recherche « SERVI1 + SERVI2 » avec BUNGE 2016-2018 : mix de lipides pour produits céréaliers (18 mois)
- Collaboration de recherche avec VINPAI 2016-2017: « optimisation de formulations à base d’amidon natifs et modifiés »
- A. Arhaliass, J. Legrand, C.Loisel, O. Goncalves, « la formulation et les procédé de production de bougies biosourcées. Transition des paraffines pétrochimiques vers des...

Bourses CIFRE
- Thèse CIFRE avec JACQUET PANIFICATION (2018-2021) - Dir. A. LEBAIL
- Thèse CIFRE avec VMI – Pétrin Continu (2018-2021) - Dir A. LEBAIL
- Thèse CIFRE avec VMI – Pétrin Batch (2016-2019) - Dir. A. LEBAIL
- Thèse CIFRE avec FRANDEX – Casse de crackers (2016-2019) - Dir. A. LEBAIL
- Thèse CIFRE avec la société FRANDEX - Compréhension des mécanismes intervenant en fabrication des tuiles apéritives – Dir. S. CHEVALLIER
- Thèse CIFRE avec la société SPF (groupe SYMRISE) 2015-2018 - Dir C. PROST
- Thèse CIFRE avec PHYTOBOKAZ (2015-2018) – CoDir A. Le Bail

Créations de laboratoires communs avec une / des entreprise(s)
- LABCOM « MIXI-LAB » avec VMI (Coord. A. LEBAIL)

Créations d’entreprises, de start-up

Organisation de colloques / congrès
- EFFOST 2018 à Nantes – A. Le BAIL. 520 Participants
- 35ème colloque national « Club Emulsion » 9-10 octobre 2018 à Nantes organisé par la structure IBSM (Denis Poncelet, Dominique Dellavalle, Jack Legrand, Catherine Loisel, Luc Marchal, Sébastien Marze, Agnès Montillet, Alain Riaublanc et Denis Renard). 86 présents dont une cinquantaine de représentants d’entreprises.
- Membre du « program committee” de “+AGRO 2018” (International Conference on Organizational Management, Energy Efficiency and Occupational Health and Safety in Agrifood Industry), A. Le BAIL.
- Membre du comité scientifique du congrès international «2018 International Nonthermal Processing Workshop and Short Course” Sorrento/Fisciano (Italy) 25-27 Sept. 2018, A. Le BAIL.
- Membre du comité scientifique du congrès international « Biopolymers » - Nantes Décembre 2017, A. Le BAIL.
- Membre du comité scientifique du 31ème congrès EFFOST 2017 (Sitges – 11-13 Nov. 2017), A. Le BAIL.
- Membre du comité scientifique du 30ème congrès EFFOST 2016 (Vienne- 28-30 Nov. 2016), A. Le BAIL.
- Membre du Comité Scientifique du Congrès « FOOD FACTORY » 2016 - Smart factory for smart products: towards the factory of the future – 8th Int. Conference on food factory for the Future - Laval, France, 2016, A. Le BAIL.
- Organisation de la 3ème édition du colloque Franco Maghrébin sur les énergies renouvelables (COFMER03), en tant que président du Comité scientifique et du comité

Activités éditoriales

Participation à des comités éditoriaux (journals scientifiques, revues, collections, etc)

- A. LEBAIL : Membre du comité de rédaction du journal Food and Bioprocess Technology depuis 2004 (Springer IF 4,115)

Indices de reconnaissance

Prix

- EFFoST 2018 - Student of the year award / 3rd position for Piyush Kumar JHA based in abstract "Recent Advances Of Microwave Assisted Freezing (MAF) In Food Processing Under Freezeway H2020 Project", Piyush Kumar JHA, Vanessa JURY, Sylvie CHEVALLIER, Alain Le-BAIL – EFFOST 8 Nov. 2018.
- Award « BIOT-FOURIER Société Française de Thermique 2016 » to M SADOT (PhD on FREEZEWAVE project coordinated by A LEBAIL « Modélisation d’un procédé de congélation assistée par micro-ondes, M. Sadot, S. Curet-Ploquin, O. Rouaud, A.Le-Bail, M. Havet ».
- Prix de la meilleure thèse ONIRIS 2015 pour Nesrin HESSO (Dir. A. LEBAIL).
- Prix " mention spéciale " au congrès " 66èmes journées techniques des industries des céréales " à Paris (4-5 Nov 2015) pour Timothée Gally (Ohmic heating to produce crustless sandwich bread and blocks of bread for crumb making T. Gally, et al.) et S. Guibert (Baking of french crêpe; impact of process on product structure S. Guibert-Martin et al.).
- Arab Belkadi a reçu le prix de thèse “EFCE Excellence Award in Product Design and Engineering 2017” lors du 10ème congrès mondial de Génie des Procédés à Barcelone (02/10/2017). Arab BELKADI a réalisé un travail de thèse entre le 1er novembre 2011 et le 3 mars 2015). Son sujet s’intitulait : "Etude du fractionnement dynamique liquide/liquide en régime laminaire pour la production de carburants alternatifs. Impact des propriétés du mélangeur". Encadrement : Agnès Montillet (co-directrice 40%), Jérôme Bellettre (laboratoire LTN, co-directeur 40%) et Dominique Tarlet (laboratoire LTN, co-encadrant 20%).
- Prix « Trophée Territoires Innovation pour la Région Ouest » décerné à la Société Denis et Fils en partenariat avec le laboratoire GEPEA, catégorie Environnement et Responsabilité Sociétale des Entreprises (RSE, Décembre 2015)
- Laurent Chaunier a obtenu un Prix du pôle de compétitivité Céréales Vallée pour l'internationalisation des thèses dans la catégorie Agromatériaux.

Distinctions

Appartenance à l’IUF
Responsabilités dans des sociétés savantes

Invitations à des colloques / congrès à l’étranger
(I=Inscription, T=Transport, A = Hébergement)
- (2018-I) Lecture Keynote invitée au congrès IMPI (International Microwave Power), Long Beach CA-USA - Spotlight Session June 26th "Microwave assisted crystallization; recent advanced applied to freezing of foods (FREEZEWAVE project)” A. LE BAIL.
- (2016-I-A) Invited Chairman FOOD FACTORY 2016 - Laval, Responsable de la session3 “GREEN FOOD FACTORY”, (Membre CS Congrès), Présentation orale Keynote "Innovative baking and refrigeration processes for a sustainable food industry” A. LE BAIL.
- (2016-I) Invited "Lead Speaker" at the International Union of Food Science & Technology Conference in the ISOPOW session (By Pr Y ROOS), 22-26 August 2016, Dublin EIRE, A review on the impact of electrical disturbances on phase change in food systems; the freezewave european project Le Bail et al.

Séjours dans des laboratoires étrangers
- E. Leroy (2016) PHC Dumont D’Urville (séjour à l’Université de Canterbury, Christchurch et au centre SCION, Rotorua, 12 jours)

Produits destinés au grand public
Emissions radio, TV, presse écrite

Produits de vulgarisation : articles, interviews, éditions, vidéos, etc.
- Page sur le site de l’université de Nantes concernant le système breveté Microsphere500® avec deux vidéos : https://www.univ-nantes.fr/espace-presse/microsphere500-un-procede-
Produits de médiation scientifique

Débats science et société

Thèses soutenues

- DOUDARD Karine "Développement de nouveaux procédés intervenant dans la fabrication de bougies". Financement CIFRE avec la société Denis et Fils (Gétigné – 44). Directeur de Thèse : Abdellah Arhaliaiss, co-encadrante : Catherine Loisel. Soutenue le 16/03/2017. Situation actuelle : post-doctorante à IFREMER.

HDR soutenues

Axe
Ecotechnologie
Présentation générale

Lors d'une communication de la Commission au Conseil et au Parlement européen (COM/2004/0038 final), les écotechnologies ont été définies comme les techniques et procédés permettant de maîtriser la pollution, les produits et services moins polluants et exigeant moins de ressources, et les moyens de gérer les ressources plus efficacement. Afin de répondre aux défis de la transition environnementale les activités de recherches développées au laboratoire ayant pour objectifs ceux définis dans les écotechnologies ont été regroupées au sein d’un axe du même nom et divisées en 3 équipes à savoir :

- TEAM : Traitement Eau Air Métrologie
- OSE : Optimisation - Système - Energie
- VERTE : Valorisation Energie/matière des Résidus et Traitement des Emissions

Les thématiques de recherche développées dans chacune des équipes concernent la compréhension l'optimisation, la simulation de procédés spécifiques. Le développement d'outils de suivi et de contrôle peut également être réalisé afin de favoriser le développement de nouvelles technologies.

L'originalité de l’axe est de pouvoir combiner les aspects procédés, énergie et réduction de l’impact sanitaire et environnemental, de même que la notion de territoire ou encore le couplage valorisation matière et énergie au sein de projets communs. De plus, l’axe Ecotechnologies permet une approche système, transverse, multi-disciplinaire et intégrée par domaine d’application.

Perspective générale

Si aujourd'hui il a été facile de construire et de réaliser des projets entre les équipes, l’ambition de l’axe est de fédérer les équipes autour d'objets de recherche plus importants et intégratifs tel que pourrait l'être, par exemple, une bio raffinerie. A titre d’illustration dans le cadre des appels à projets de l’Isite NExT en 2018 il a été proposé le projet « µ-Algae Green Factory » (Figure 1) qui intègre les 2 axes du laboratoire et les équipes VERTE (rouge), TEAM (bleu), OSE (Réseaux d’énergie) et BAM (vert).

![Figure 1 : Schéma général du projet µ-Algae Green Factory](image.png)
Equipe TEAM
« Traitement Eau Air Métrologie »

Responsable : Valérie HEQUET (IMTA)
Co-responsable : Gérald THOUAND (Univ.Nantes)

Présentation de l’équipe

<table>
<thead>
<tr>
<th>Chercheurs et enseignants chercheurs permanents</th>
<th>Personnel technique (non administratif)</th>
<th>Doctorants</th>
<th>Post-Doctorants</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>9</td>
<td>22 (dont 9 en cours)</td>
<td>2</td>
</tr>
</tbody>
</table>

Chercheurs et enseignants-chercheurs permanents
Yves ANDRES Professeur, HdR, IMT Atlantique (50%)
Ali ASSAF IR, Nantes
Karine BORNE MA, IMT Atlantique
Florent CHAZARENC MA, HdR, IMT Atlantique
Eric DUMONT MCF, HdR, Université de Nantes
Marie José DURAND MCF, HdR, Université de Nantes
Claire GERENTE MA, HdR, IMT Atlantique (50%)
Nicolas GRIPON Agrégé, Université de Nantes
Valérie HEQUET Professeur, HdR, IMT Atlantique
Sulivan JOUANNEAU MCF, Université de Nantes
Aurélie JOUBERT MA, IMT Atlantique
Jalil LAHMAR Professeur, HdR, Université de Nantes
Cécile RAILLARD MCF, Université de Nantes
Nour-Eddine SABIRI MDC, HdR, Université de Nantes
Albert SUBRENAT MA, HdR, IMT Atlantique (50%)
Félicie THERON MA, IMT Atlantique
Gérald THOUAND Professeur, HdR, Université de Nantes

Personnel technique
Ali ASSAF Ingénieur de Recherche, Université de Nantes
François-Xavier BLANCHET Technicien Supérieur, IMT Atlantique (50%)
Patrick BRION Technicien Supérieur, IMT Atlantique (50%)
Mickaël CREGUT Ingénieur de Recherche, Université de Nantes
Katel CHAILLOU Ingénieur de Recherche, IMT Atlantique (50%)
Eric CHEVREL Technicien Supérieur, IMT Atlantique (50%)
Yvan GOURIOU Ingénieur de Recherche, IMT Atlantique (50%)
Jérôme MARTIN Technicien Supérieur, IMT Atlantique (50%)

Personnels techniques non permanents
Emilie FAURY Assistant Ingénieur contractuel

Mouvements au cours du quinquennal
Départ :
- Florent CHAZARENC Directeur de recherche IRSTEA (depuis le 31/8/2017)
Arrivée :
- Karine BORNE Maître-Assistant, IMT Atlantique (depuis 1/10/2017)

Doctorants
En cours

Ayant soutenu

2018

- **ABD ALI ABD ZAID Safaa**, Filtration performances of antimicrobial and regular HVAC filters regarding PM10 and microbial aerosols in laboratory and realistic conditions, IMT Atlantique - Université Bretagne Loire, Financement Bourse du Gouvernement Iraquien Directeur de thèse Y. Andrès, co-encadrement: Aurélie Joubert, soutenue le 27 septembre 2018. Enseignant Université Irak.

- **HUA Anna**, Détection et évaluation de la contamination métallique dans des échantillons environnementaux complexes, financement Région Pays de la Loire, Direction Marie José Durand, co-direction Gérard Thouand, soutenue le 2 juillet 2018, actuellement ATER École des Mines de St Etienne.

- **MANSOURI Alhem**, Approche intégrée du suivi d'un procédé de biomédiation : application aux sédiments de la lagune de Bizerte, financement co-tutelle gouvernement Tunisien et fond propre TEAM-site de La Roche/Yon, Direction Marie José Durand, 16 octobre 2018, actuellement vacataire Université Carthage et recherche d'emploi.

2017

- **BITTEL Marine**, Détection des polluants chimiques par biocapteurs bactériens couplés à la spectroscopie Raman, financement CIFRE avec Tronico, direction Gérald Thouand, co-direction Marie José Durand, 23 mai 2017, actuellement en CDI chez Tronico.

- **SWEETLOVE Cyril**, Développement de techniques permettant d'améliorer la prédiction de la biodégradabilité en milieu naturel de produits organiques faiblement hydrosolubles dans des tests de laboratoire, thèse financement L’Oréal pendant l’activité salariée, Direction Gérard Thouand, co-direction Jacques L’haridon, 15 décembre 2017, actuellement CDI L’Oréal.

2016

- **BRILLET François**, Nouvelles stratégies d’évaluation de la biogégradation de substances organiques dans le cadre de la directive européenne REACH, thèse financement : Région-
L’Oréal, Direction Gérald Thouand, 5 juillet 2016, actuellement en poste chez L’Oréal à Singapour.

Post-doctorants et chercheurs seniors accueillis

Post-doctorants

Chercheurs seniors accueillis

1. **Dr. EFFEBI Kôkôh Rose**, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire, bourse mobilité projet AGURES, du 29 février au 22 avril 2016 et 1er juin au 31 juillet 2016.

2. **Pr. CHAIYEN Pimchai**, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Thailand, Invitation du 1-8 juin 2018. collaboration biocapteur microbiens dans le cadre du projet Région Innovasia.

3. **Dr. LEFEBVRE Olivier**, National University of Singapore, Department of Civil and Environmental Engineering, du 12/12/2016 au 16/12/2016, Programme Merlion PI "Novel nano-structured adsorbents for emerging contaminants removal in drinking water treatment" (proposal number 3.10.15).

5. **Dr. NGAMWONGSATIT Bhinyada** (assist professor), Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Thailand, collaboration axe détection pathogène dans le cadre du projet Région Innovasia.

7. **Dr. PRIADI Cindy Rianti**, Faculty of Engineering, Universitas Indonesia, Civil Engineering Department, Depok, Indonesia, du 31/5/2017 au 6/6/2017, Enseignement en Master PM3E et collaboration de recherche.

8. **Dr. PUCHER Bernhard**, University of Natural Resources and Life Sciences, BOKU, Vienna, Autriche, du 29 février au 24 mars 2016, Mise au point des simulations numériques des résultats obtenus sur les pilotes expérimentaux de filtres plantés de roseaux.

9. **Dr SAMPHAO Anchalee** (assistant professor), Department of chemistry, University Ubon Ratchathani, Thailand, collaboration biocapteur microbiens dans le cadre du projet Région Innovasia.
Politique scientifique

Missions et objectifs scientifiques

La démarche générale de l’équipe est de permettre la compréhension des mécanismes à l’échelle microscopique mis en œuvre jusqu’à l’intégration au niveau des procédés à l’aide d’études paramétriques. Il s’agit d’apporter des réponses pertinentes, adaptées aux problématiques rencontrées, dans des conditions réalistes, en procédant à l’optimisation, l’intensification, au couplage des procédés ou encore en l’intégration du suivi des performances via des capteurs.

De façon synthétique, le schéma suivant résume le périmètre de l’équipe.

Orientations et choix stratégiques
La structuration de l’équipe est donnée par trois grandes thématiques qui correspondent aux problématiques et verrous soulevés lors de l’application des procédés de traitement dans des matrices aqueuses ou atmosphériques et le déploiement de moyens de mesure dans ces milieux.
Thématiques « Eau »

L’eau est une ressource dont il faut préserver la qualité et que l’on peut réutiliser et valoriser en fonction des usages envisagés (Directives Européennes, Plan National Santé Environnement). L’équipe TEAM développe des activités de recherche pour la « Réutilisation des effluents : eaux domestiques, eaux grises » ou pour le traitement de finition des eaux avant usage ou rejet dans les milieux récepteurs « Procédés extensifs » et « Procédés de finition ; filtration lente, adsorption, oxydation » pour le contrôle de la pollution des eaux. Les figures 2 et 3 illustrent en partie ces activités.

Les cibles sont les nutriments (azote, phosphore), les micropolluants organiques, les polluants émergents, les ions métalliques ou les métaalloïdes et les contaminants biologiques.

La particularité de nos activités est de proposer des solutions de traitement adaptées à la cible et aux besoins d’usage. Les verrous scientifiques et techniques à lever sont :

i) de pouvoir proposer des solutions performantes en termes d’abattement de pollution mais également viables d’un point de vue énergétique et économique,

ii) d’évaluer les performances des procédés dans les conditions proches des cas réels, à faibles concentrations de polluants et en milieux multi-composés et complexes,

iii) de mettre en œuvre et développer de nouvelles méthodologies ou stratégies de mesure pour donner des réponses de performances non seulement estimées via l’abattement de polluants en amont et aval des systèmes de traitement mais également en termes d’impact global en intégrant des mesures de toxicité ou de biodégradation au travers de réponses biologiques. Il s’agit notamment de prendre en compte des effets complexes des mélanges de substances organiques et minérales. Ce dernier verrou est à l’interface entre les thématiques « Eau » et « Métrologie ».

Fig 2. Étude à l’échelle pilote de procédés extensifs pour l’abattement de nutriments et matières en suspension
Fig 3. Mise en évidence du biofilm au niveau du système racinaire de plantes dans le cas de filtres plantés

Thématiques « Air »

La particularité des activités de l’équipe est d’apporter des réponses adaptées aux cibles identifiées, d’apporter une solution globale et intégrée lorsqu’il s’agit de matrices multi-composés ou complexes. Les verrous scientifiques et techniques majeurs sont :

i) le suivi et l’identification des polluants cibles mais également des potentiels intermédiaires de réactions ou sous-produits,

ii) de réaliser des essais dans des conditions proches des conditions réelles, en matrices complexes et multi-composées ou en conditions d’humidités ou de températures spécifiques,

iii) de pouvoir réaliser des suivis de performances en continu et d’optimiser le fonctionnement de façon à réduire les impacts énergétiques. L’équipe va ainsi proposer des procédés de traitement optimisés ou en couplage. L’intégration de capteurs pour le contrôle-commande des procédés est abordée avec l’objectif à plus longs termes d’intégrer des capteurs biologiques. Ce dernier verrou à lever est à l’interface entre les thématiques « air » et « métrologie ».
Thématiques « Métrologie »

Les thématiques « Métrologie » ont pour cible l’évaluation des performances des procédés. Elles vont se décliner selon différents questionnements disciplinaires. Le premier reste celui de la représentativité des mesures pour rendre compte d’un état physiologique de microorganismes dans un bioprocéder. Le second est dédié à l’intégration des capteurs et bio-capteurs dans un procédé ou un milieu et le troisième la détection des microorganismes ou les modifications physico-chimique engendrées par leur présence.

Au travers de ces thématiques, les domaines couverts sont :
- la microbiologie et le génie génétique,
- l’écotoxicologie des milieux complexes, notamment pour appréhender les effets cocktails des pollutions,
- les biocapteurs (majoritairement optiques) et la question de la mobilité et la portabilité des systèmes de mesure, notamment le déploiement de drones aquatiques et aériens,
- l’analyse non invasive de l’état physiologique des microorganismes par analyse spectrale (essentiellement Raman) illustrée figure 6. Cette partie a permis de déployer le savoir faire sur des questions touchant l’agroalimentaire (détection de pathogènes, caractérisation des aliments, authentification,) et le suivi en ligne de photobioréacteurs.
Les applications en métrologie concernent le développement d'appareils de mesure intégrés dans les procédés par exemple ou utilisés tel que dans des stratégies de mesure sur site (rivières, sols,...). L'objectif est à ce niveau, d'anticiper les événements de pollution pour devancer les catastrophes écologiques ou sanitaires mais aussi d'intégrer de nouvelles stratégies de mesure pour l'industrie. L'activité en métrologie est transversale avec des compétences en biologie, chimie, matériaux, électronique, statistiques. Aussi, le tissu d’entreprises gravitant autour d’une recherche en métrologie (du concept à l’appareil) est assez large. On peut citer parmi nos collaborations les sociétés Vigicell, Bionef, Total, Arkéma, L’Oréal, Tronico, Eurofins, Suez, Veolia, Sotralentz, STX, Shell, Solvay.

Fig 6. Illustration par deux exemples de l’analyse non invasive par spectroscopie Raman. À gauche, suivi de la physiologie de Chlamydomonas reinhardtii en milieu Sueoka cultivée en batch photobioréacteur. Chaque état physiologique est caractérisé par un spectre spécifique. À droite, ciblage de l’impact de 4 substances à concentration toxique sur la bactérie Escherichia coli montrant les effets sur différentes parties de la cellule (ADN,…).

Thème transversal : couplage mesure-procédé

L'optimisation des procédés est un enjeu stratégique au regard des défis environnementaux à venir. Les deux principaux sites sur lesquels est localisée l’équipe (Nantes et La Roche sur Yon) ont des actions thématiques différenciées mais se réunissent au travers de ce thème transversal couplage mesure-procédé.

Ainsi, l’équipe TEAM a, dès sa restructuration en 2014, poursuivi les objectifs suivants :
- proposer des solutions de traitement qui intègrent un couplage mesure-procédé pour un suivi et un contrôle du procédé et ce de façon directe et rapide. Le but est de pouvoir anticiper les variations des conditions d’entrée ou de fonctionnement du système.
- Apprécier les performances des systèmes par rapport à un abattement d’un ou plusieurs polluants types mais également d’associer une évaluation de la performance en termes d’impact sur l’homme et sur le milieu récepteur. Ces impacts peuvent être estimés en termes de toxicité ou d’effets de perturbation endocrinienne ou de biodégradabilité. L’établissement de relations entre mesures physico-chimiques et bio-réponses est envisagé (figure 7).
- Soutenir une politique d’innovation et de transfert technologique associant procédés et mesures-contrôle au travers de plateforme et d’un laboratoire commun public/privé.

Fig 7. Suivi de la dégradation de la 17β-estradiol avec identification des intermédiaires majoritaires et évaluation du potentiel de perturbation endocrinienne

Bilan général d’activité et faits marquants de la période 2016-2018

Bilan général d’activité de l’équipe

Lors de la période 2016-2018, l’équipe a porté ses efforts sur les trois thématiques de recherche avec à la fois des démarrages de thèses, des collaborations académiques et industrielles qui sont relevées dans la partie « production » de l’équipe.

Sur les thématiques « Eau », l’équipe a développé ses activités selon les axes suivants :

- Un développement important a été possible à échelle réelle de procédés extensifs tels que les filtres plantés de roseaux (projets Opure, Phytoria, Ecostar, Starelite) pour le traitement de différents types d’effluents aqueux (lixiviats de décharge, eaux usées) avec des collaborations industrielles fortes et des démarrages de thèses cifre et post-doctorat (S. Rodriguez, Z. Grebenshchykova, K. Tondera). De plus, l’accord de financement récent d’un projet en partenariat industriel (projet FloWAT ANR PRCE) va permettre d’élargir le développement aux marais flottants pour le traitement d’effluents de l’industrie agro-alimentaire.

- Les activités concernant les procédés de finition se positionnent de façon plus spécifique via l’utilisation de matériaux carbonés (certains matériaux carbonés sont réalisés dans le cadre des activités de l’équipe VERTE) pour l’élimination de polluants ciblés (micropolluants organiques, métalliques, métalloïdes, nutriments) ou dans des matrices aqueuses spécifiques (eau de mer, projets ADAQUA). Le traitement de finition par photocatalyse solaire (collaboration actuelle avec la Queen’s University of Belfast) a pour cible la diminution de la charge en polluants organiques et la désinfection. L’enjeu de ces problématiques est d’associer ce traitement à des traitements en amont (filtration sur sable par exemple) et de proposer des solutions robustes et autonomes.

Sur les thématiques « Air », l’équipe a développé ses activités selon les axes suivants :

- Les activités relatives au traitement de l’air intérieur ont démarré depuis une dizaine d’années et se poursuivent par une suite de projets financés par l’ADEME ou en collaboration industrielle (projets TIPEE, ETAPE, EMIBIO, AirMed). L’expertise de l’équipe permet d’aborder les mécanismes d’élimination des polluants (transport, dépôt, capture,
dégradation, développement microbien par exemple) mais également de réaliser des études paramétriques à l'échelle de pilotes de laboratoire pour proposer des réponses globales de traitement. Les projets les plus récents ont conduit à des solutions intégrées (filtration particulaire, élimination de composés gazeux, élimination de bio-aérosols) en situation réelle de traitement (projet CUBAIR).

- Les activités relatives aux traitements des émissions et atmosphères industrielles ont fait l’objet de partenariats avec des entreprises locales. Le traitement des émissions d’élevage de porcerie, par exemple, a permis l’installation sur site d’un pilote de traitement sur de longues périodes d’expérimentation (projets PAPOVIT, ADEME TARA).

- L’équipe se positionne également sur des activités très spécifiques de traitement de composés toxiques de l’air, financés par des organismes nationaux ou des industriels (projets MIRE, CHLORE, DGA). Ces activités sont possibles grâce à des compétences spécifiques du laboratoire à travers sa plateforme expérimentale SafeAIR.

Sur les thématiques « Métrologie », l’équipe a poursuivi ses activités selon les axes suivants :

- Les biocapteurs : le laboratoire commun RIMAE a permis de fixer un cap sur 5-8 ans de développement technologique et de ressourcement. Notamment un premier appareil (TOXLAB) qui sera commercialisé en 2019. Le labcom se ressource actuellement avec une thèse CIFRE et se projette sur les problématiques de mesure de toxicité dans l’air qui fait l’objet du thème transversale.

- L’analyse non invasive de l’état physiologique des microorganismes a pu se développer grâce à une thèse de l’IUM/présidence de l’Université de Nantes. Le sujet concerne le suivi de la physiologie des micro-algues en photobioréacteur et surtout la compréhension des difficultés de prise de spectres en milieu turbulent. Cette approche a permis d’obtenir le projet ANR ORAMA en 2018, permettant de poursuivre, à un stade plus industriel, la thématique. Cette approche a aussi été étendue à l’agroalimentaire au travers du sexage des œufs de poules (programme SOO - France Agrimer) et d’une plateforme instrumentée intégrant un imageur Raman haute performance de type CARS (Coherent Antistokes Raman Spectroscopy).

Sur le thème transversal :
L’équipe TEAM a débuté sa réflexion sur l’évaluation de la dépollution de l’air associée à la mesure de sa toxicité. Plusieurs projets ont été déposés (notamment à l’ANR et au travers de financements régionaux) mais le projet n’a pas encore été financé. Un ingénieur est recruté sur fonds propres en 2019 pour faire avancer le sujet.

Faits marquants de la période

- Laboratoire commun ANR RIMAE, Recherche et industrialisation de Mesures Appliquées à l’Environnement, réunissant la société TRONICO (Vendée) et GEPEA TEAM La Roche sur Yon.
- Ouverture dans le cadre du Master A3M (Analyse, Molécules, Matériaux, Médicaments) de l’option master international Biométrie, Bioanalyse, Biosensor sur le site TEAM-La Roche sur Yon.
- Plateforme MARS intégrant un gros équipement d’imagerie chimique CARS (Coherent Antistoke Raman Spectroscopy)- financement CPER / AGRIMER / Industriel (Tronico).
- Plateforme expérimentale SafeAIR, vecteur de collaborations de recherche académiques et industrielles (inaugurée en 2015). Cette plateforme représente 230 m² de salles spécifiques et sécurisées permettant la gestion de l’air entrant ou sortant, traité et sous contrôle de pression. Elle permet la manipulation de particules fines, ultrafines et nanoparticules, d’aérosoles microbiens, de composés toxiques, et de travailler avec de faibles concentrations en polluants.
- Congrès S2Small, International IWA conference on sustainable solutions for small water and wastewater treatment systems (S2small2017), 22 octobre 2017, Cité des Congrès, Nantes (France), coordinateur : Florent Chazarenc.

Analyse SWOT

<table>
<thead>
<tr>
<th>Interne</th>
<th>Forces</th>
<th>Faiblesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Pluralité des compétences</td>
<td>- Distance géographique</td>
</tr>
<tr>
<td></td>
<td>- Démarche scientifique : mécanismes vers procédés</td>
<td>- Faible lisibilité de l’extérieur de la complémentarité</td>
</tr>
<tr>
<td></td>
<td>- Moyens expérimentaux, plateformes</td>
<td>- Positionnement global pas suffisamment affiché</td>
</tr>
<tr>
<td></td>
<td>- Collaborations industrielles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Externe</th>
<th>Opportunités</th>
<th>Menaces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Thèses sur thème transversal</td>
<td>- Dispersion thématique</td>
</tr>
<tr>
<td></td>
<td>- Ressourcement interne</td>
<td>- Développement centré par thématique unique</td>
</tr>
<tr>
<td></td>
<td>- Autofinancement sur thème transversal</td>
<td></td>
</tr>
</tbody>
</table>

Les points forts de l’équipe

Pour atteindre ces objectifs, l’équipe s’appuie sur deux grandes compétences qui sont la Génie des Procédés et la Métrologie. L’équipe déploie des compétences scientifiques et une expertise qui permettent le suivi et l’évaluation des performances des procédés via des stratégies de mesures globales et spécifiques avec possibilité d’intégration de biocapteurs. L’équipe déploie également des compétences scientifiques permettant de caractériser les phases et interfaces mises en œuvre dans les procédés et d’accéder à la compréhension des phénomènes de transport ainsi que des écoulements mis en jeu. Les stratégies en termes d’expérimentation, simulation et modélisation permettent une compréhension fine des mécanismes.

Les points forts de l’activité de l’équipe sont principalement les suivants :

1) la **plurality des compétences** dans différents domaines : i) les transferts gaz - liquide – solide, ii) les réactions chimiques ou biologiques hétérogènes, iii) la mécanique des fluides et plus particulièrement les écoulements en milieux poreux et les transferts couplés aux interfaces, iv) les matériaux, en particulier la caractérisation des matériaux poreux et nano-structurés, v) la microbiologie, au travers de l’étude du comportement des microorganismes dans les procédés de traitement, vi) la métrologie biologique avec le développement de biocapteurs, de tests de toxicité et de biodégradation et l’étude du vivant au moyen de méthodes spectrales.

2) Une **démarche scientifique multi-échelle** : les études vont s’attacher à la compréhension des mécanismes et vont jusqu’à la mise en œuvre des systèmes.
3) Des **moyens expérimentaux et plateformes de recherche spécifiques** : la plateforme SafeAir, permet l’étude de composés spécifiques, toxiques qui sont une spécificité de l’activité de l’équipe. Cette particularité permet à la fois de réaliser des études qui ne sont pas réalisables dans d’autres contextes et d’associer des solutions techniques innovantes. La plateforme MARS, dédiée à l’analyse non invasive du vivant et au développement de biocapteurs.

4) La proposition de solutions répondant à une approche par filière avec association ou couplage de procédés intégrant les aspects mesuré par analyses physico-chimiques ou via des biocapteurs pour le suivi des performances. L’équipe apporte ainsi des **solutions globales et intégrées en lien avec les besoins de nos sociétés et demandes industrielles**.

Les menaces et risques

L’équipe TEAM est très active sur les 3 thèmes principaux « Eau », « Air », « Métrologie » et les différents acteurs sont localisés principalement sur 2 sites, Nantes et La Roche / Yon. Cette **distance géographique** est un frein d’ordre pratique aux activités transversales.

Il peut en résulter d’une part un **manque de lisibilité de l’extérieur** sur nos compétences et complémentarités, et d’autre part il y a un risque de **dispersion thématique**.

En effet les activités de recherche peuvent étre **centrées sur une thématique** de façon à approfondir les connaissances et savoirs, cependant il est important de **positionner ses activités** comme ressources aux activités de recherche plus transversales ou aux interfaces avec d’autres thématiques.

Les opportunités sont développées dans la partie suivante présentant les perspectives de l’équipe.

Perspectives de l’équipe

Les perspectives de l’équipe sont de poursuivre le développement de sa notoriété sur ses 3 thématiques cœur :

ii) Les travaux sur les thématiques « Air » sont de déployer les compétences de l’équipe vers la proposition de solutions de traitement intégré, économiques et visant un ensemble de polluants que cela soit pour le traitement de l’air intérieur ou les atmosphères et émissions industrielles. Il s’agit également de poursuivre les travaux pour la compréhension des mécanismes de transformation de composés gazeux ou capture de particules par exemple. La plateforme SafeAir permet l’étude de composés spécifiques, toxiques qui sont une spécificité de l’activité de l’équipe dans le paysage national.

iii) La poursuivre les travaux de la thématique « Métrologie » concerne principalement la mobilité des systèmes de mesure (drone), l’application en agroalimentaire de la mesure non invasive dans le cadre d’une chaire industrielle régionale, le développement de biocapteurs en milieu marin, la compréhension de la collecte de signaux Raman issus de bactéries. Le passage à l’échelle industrielle de procédés à fort potentiel est possible notamment grâce au labcom RIMAE.
Un des objectifs de l’équipe sur les années à venir est de développer davantage les thématiques transverses. Il s’agit ici de faire la démonstration de la plus value du couplage mesure – procédé, de démontrer la faisabilité du développement de biocapteurs pour des applications spécifiques (air intérieur, milieu marin). L’équipe a décidé pour faire avancer le sujet transversal de mettre des ressources internes (financement d’ingénieur recherche) sur la mesure de la toxicité de l’air.

A partir des compétences thématiques spécifiques développées au sein de l’équipe, il s’agira également de construire des projets qui intègrent les activités d’autres équipes du laboratoire, notamment l’équipe VERTE et l’équipe BAM avec lesquelles il existe déjà des interfaces et complémentarités (par exemple le projet ANR ORAMA, assurant le suivi des photobioréacteurs par spectroscopie Raman). Il s’agit ici de pouvoir proposer des solutions de plus grandes envergures sur des enjeux de société auxquels une réponse globale aura plus d’impact.
Produits et activités de recherche

<table>
<thead>
<tr>
<th>Equipe TEAM</th>
<th>Période de référence : 2016-2018</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Journaux / Revues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articles scientifiques (ACL)</td>
</tr>
</tbody>
</table>

2018

2017

20. Pucher, B; Ruiz, H; Paing, J; Chazarenc, F; Molle, P; Langergraber, G, (2017). Using numerical simulation of a one stage vertical flow wetland to optimize the depth of a zeolite layer, Water Science and Technology 75, 3, 650-658

2016

19. N. E. Sabiri, E. Monnier, V. Raimbault, A. Masse, V. Sechet, P. Jaouen, Effect of filtration rate on coal-sand dual-media filter performances for microalgae removal. Environmental Technology, Pages 345-352 | Received 20 Feb 2016, Accepted 16 May 2016, Accepted author version posted online: 31 May 2016, Published online: 13 Jun 2016 http://dx.doi.org/10.1080/09593330.2016.1193224

Articles de synthèse / revues bibliographiques

Autres articles (articles publiés dans des revues professionnelles ou techniques, etc.)

Ouvrages

Direction et coordination d'ouvrages / édition scientifique

Chapitres d'ouvrage

Colloques / congrès, séminaires de recherche

Conférences orales

2018

1. Andres Y. Air handling unit and indoor air bioaerosols’ measurements. RISE 2018 Third International Meeting on Environmental Health Strasbourg, Council of Europe Strasbourg, France, November 28 to 30, 2018
8. Héquet V, Batault F, Raillard C, Thévenet F, Le Coq L, Dumont E, Determination of The Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation Purifiers Using a Closed Loop Reactor, The 10th European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA10), Almeria, Spain, 4 – 8 June 2018
photocatalyse - pour traiter l’air intérieur – com. affiche, 26ème Congrès Français de Thermique, 29 mai - 1er juin 2018, Pau, France

13. Tobon A M, Andres Y, Locoge N. Comparison of two test methods to assess the resistance of bio-based insulation materials against moulds, INDOOR AIR, Philadelphia, PA, USA. July 22 to 27, 2018

2017

1. Barca C., Martino M., Chazarenc F., Roche N., Hennebert P. (2017). Phosphorus recovery from saturated samples of bauxite residue after their use as reactive filter material to treat wastewater, 16ème Congrès de la Société Française de Génie des Procédés, 11 juillet 2017, Nancy (France)

6. Dumont E. Validation of a rapid procedure to determine biofilter performances. 7th International Conference on Biotechniques for Air Pollution Control and Bioenergy. La Corogne, Espagne, 19-21/07/2017

2016

5. Brillet F, Maul A, Durand MJ, Thouand G, 2016, Approaching chemicals’ persistence through a new strategy of use of RBT tests, SETAC Europe 26th Annual Meeting, Nantes, France

11. Francin A., Calvez-Loncle M., Paing J., Perez-Giraudon L., Chazarenc F. Comparing environmental impacts of conventional bioreactors and constructed wetland (with/without intensifications) for industrial effluent treatment using LCA. *15th IWA Specialist Conference on Wetland Systems for Water Pollution Control Gdansk, Pologne. 4 - 9 September, 2016*

15. Pucher B., Ruiz H., Paing J., Chazarenc F., Molle P., Langergraber G. Using numerical simulation of a one stage vertical flow constructed wetland to optimize the depth of a zeolite layer. 15th IWA Specialist Conference on Wetland Systems for Water Pollution Control Gdañsk, Pologne. 4 - 9 September, 2016

16. Ruiz H., Paing J., Molle P., Chazarenc F. Improvement of ammonium removal in onestage French vertical flow constructed wetlands (VFCW) using different filtration media. 15th IWA Specialist Conference on Wetland Systems for Water Pollution Control Gdañsk, Pologne. 4 - 9 September, 2016

18. Morisseau K., Joubert A., Le Coq L., Andres Y. Methodology for the evaluation of HVAC combined filter performances regarding multipollutants. WFC 12, 12th World Filtration Congress, Taipei (Taiwan), 11-15 April 2016

22. Woudberg S., Van Jaarsveld J., Dumont E. Analytical determination of the effect of biofilm growth on the pressure drop over a biofilter, World Congress on Momentum, Heat and Mass Transfer (ICMFHT’16), Prague, République Tchèque, 4-5/04/2016

Conférences par affiches

2018

5. Raillard C, Whyte H.E, Maroga Mboula V, Thévenet F, Locoge N, Héquet V, Photocatalytic oxidation of several mixtures of indoor air pollutants by a commercialized stand-alone device,
The 10th European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA10), Almería, Spain, 4 – 8 June 2018

6. Theron F., Lys E., Bertrand F., Le Coq L. Characterization of the porous structure of a fibrous medium used for air filtration by X-ray micro-tomography, Journées d'Etudes des Milieux Poreux, Nantes (France)

7. Whyte H.E, Raillard C, Subrenat A, Héquet V, Influence of operating parameters on the single-pass removal efficiency during the photocatalytic degradation of acrylonitrile, The 10th European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA10), Almería, Spain, 4 – 8 June 2018

2017

1. Barca C., Martino M., Chazarenc F., Roche N., Hennebert P. Phosphorus recovery from saturated samples of bauxite residue after their use as reactive filter material to treat wastewater, 16ème Congrès de la Société Française de Génie des Procédés, Nancy (France)

2. Ben Jaber M., Couvert A., Amrane A., Le Cloirec P., Dumont E. Hydrogen sulfide removal from biogas mimic by an anoxic biofilter packed with expanded schist particles. 7th International Conference on Biotechniques for Air Pollution Control and Bioenergy. La Corogne, Espagne, 19-21/07/2017 (poster)

5. Héquet V, Batault F, Raillard C, Thévenet F, Le Coq L, Dumont E, Determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation purifiers for indoor air pollutants using a closed-loop reactor, 10th Word Congress of Chemical Engineering (WCCE 2017) October 1-5, Barcelona, Spain

2016

3. Bandaly V., Andres Y., Le Cann P. The persistence of respiratory viruses on filters of air handling units, The 14th International Conference on Indoor Air Quality and Climate (Indoor Air 2016), Gand (Belgique)

4. Batault F, Raillard C, Héquet V, Thévenet F, Locoge N, Le Coq L. Study of physico-chemical mechanisms for modeling the influence of operating conditions in a PCO indoor air treatment device, 9th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications SPEA9, June 13-17, Strasbourg, France

Brevets, licences et déclarations d’invention

Brevets déposés
3. Thouand G, Durand MJ, Jouanneau S, 2018, Méthode d'estimation de la toxicité globale d'un échantillon aqueux, kit pour sa mise en œuvre et utilisation pour divers types d'effluents, demande de dépôt 18 51496 le 21/02/2018

Brevets licenciés

Contrats de recherche financés par des institutions publiques ou caritatives

Contrats européens (ERC, H2020, etc.) et internationaux

Contrats nationaux
- ANR PRCE, CES43 Bioéconomie, projet ORAMA, 2018-2022, Suivi en ligne de la production algale dans un bioréacteur, coordination GEPEA TEAM,
- Projet partenarial avec la société TRONOICO (début 2015-2018), coordination GEPEA TEAM.
- ANR, Projet Nanoplastic, Evaluation du devenir des nanoplastiques en milieu marin, Coordination Université du Maine.
- PEPS, SKYTOX, Développement d’un outil de diagnostic et d’évaluation de l’impact toxicologique des polluants atmosphériques, coordination GEPEA TEAM.
- Projet ABRESOL (2012-2016), Mise au point et validation sur site d’un procédé intégré de traitement de COV hydrophobes.
- Projet TIPEE - AMI ADEME, (2013-2016) Technological and innovative platform for environmental efficiency, Coordinateur IRSTV.
- Projet CHLORÉ, AAP Générique 2018, Projet FloWAT (2019-2023), Marais flottant comme traitement tertiaire des effluents agro-alimentaires, coordination GEPEA TEAM.
- Projet PHYTORIA (2012-2016) Développement des procédés de phytoépuration pour le traitement d’effluents industriels.
- Projet ECOSTAR (2014-2017) Optimisation de la filière roseaux pour trois niveaux de performances en vue de son développement sur le marché national et international.

Contrats avec les collectivités territoriales

- Contrat Schéma Locale de l’Enseignement supérieur et de la Recherche – 2014-2020, territoire de la Roche- sur -Yon – Projet Innovée- (en lien avec le CPER IGProbe et CISPEO)
- Projet ADAQUA – Adsorption sur charbon actif pour une amélioration de la qualité de l’eau de mer en AQUAculture : application aux écloseries conchylicoles, Région Pays de la Loire – Smipap, 2015-2016, Coordinateur Ifremer.

Contrats financés dans le cadre du PIA

- FranceAgriMer, 2016-2018, Projet SOO, sexage des œufs, Invest Avenir PIA, coordination TRONICO.

Interactions avec les acteurs socio-économiques

Contrats de R&D avec des industriels
- Société L’Oréal, Stratégie d’évaluation de la biodégradation, 2017, coordination par cellule de compétence BIOSYS du laboratoire GEPEA Team-La Roche.
- Société SEPIC, Stratégie d’évaluation de la biodégradation, 2018, coordination par cellule de compétence BIOSYS du laboratoire GEPEA Team-La Roche.
- EDF, Etude de l’absorption de gaz chlorés non radioactifs, avril 2015- septembre 2016, Gérente C., Mokili M., Chaillou K., Gouriou Y.
- Projet DACARB (2016), Activation de charbon de bois d’eucalyptus et test d’adsorption en phase aqueuse.
- Projet SVITEC (2017-2018), Evaluation de la capacité d’adsorption du phosphore sur différents chars.

Bourses Cifre

Créations de laboratoires communs avec une / des entreprise(s)
- ANR LabCOm RIMAE, Recherche et Innovation pour la mesure appliquée en environnement, coordination GEPEA TEAM-site de La Roche/Yon.

Organisation de colloques / congrès
- Congrès ISBC 2018, International Symposium for Bioluminescence and Chemiluminescence, Cité des Congrès Nantes, 28-31 mai 2018, France
- Congrès S2Small, International IWA conference on sustainable solutions for small water and wastewater treatment systems (S2small2017), 22 octobre 2017, Cité des Congrès, Nantes (France).Cité des Congrès Nantes, Coordinateur : Florent Chazarenc
- Héquet V., Membre du Comité d’organisation Les Journées du risque 2017 : «Le risque environnemental, regards interdisciplinaires et nouvelles formes de régulation» 15 et 16 novembre 2017 Angers, France
Activités éditoriales

Participation à des comités éditoriaux (journaux scientifiques, revues, collections, etc)
- Gérald Thouand, Editeur pour Environmental Science and Pollution Resarch (Springer Nature), depuis 2012
- Gérald Thouand, Editeur pour Frontiers in Microbiology, depuis 2011
- Gérald Thouand, Editeur invité Analytical Bioanalytical Chemistry, 2017, Microbial Biosensors

Direction de collections et de séries

Indices de reconnaissance

Prix

Distinctions
- Gérald Thouand, Chevalier des Palmes Académiques.

Appartenance à l'IUF

Responsabilités dans des sociétés savantes
- Gérald Thouand, Executive Board de l'International Society for Bioluminescence and Chemiluminescence.
- Karine Borne, member of the International Water Association (IWA/IAHR) Joint Committee on Urban Drainage (JCU).

Invitations à des colloques / congrès à l’étranger

Séjours dans des laboratoires étrangers

Thèses soutenues

2018
- ABD ALI ABD ZAID Safaa, Filtration performances of antimicrobial and regular HVAC filters regarding PM10 and microbial aerosols in laboratory and realistic conditions, IMT Atlantique - Université Bretagne Loire, Financement Bourse du Gouvernement Iraquien Directeur de thèse Y. Andrès, co-encadrement: Aurélie Joubert, soutenue le 27 septembre 2018. Enseignant Université Irak.
MANSOURI Alhem, Approche intégrée du suivi d'un procédé de bioremédiation : application aux sédiments de la lagune de Bizerte, financement co-tutelle gouvernement Tunisien et fond propre TEAM-site de La Roche/Yon, Direction Marie José Durand, co-direction Gérald Thouand, 16 octobre 2018, actuellement vacataire Université Carthage et recherche d'emploi.

2017

BITTEL Marine, Détection des polluants chimiques par biocapteurs bactériens couplés à la spectroscopie Raman, financement CIFRE avec Tronico, direction Gérald Thouand, co-direction Marie José Durand, 23 mai 2017, actuellement en CDI chez Tronico.

SWEETLOVE Cyril, Développement de techniques permettant d'améliorer la prédiction de la biodégradabilité en milieu naturel de produits organiques faiblement hydrosolubles dans des tests de laboratoire, thèse financement L’Oréal pendant l’activité salariée, Direction Gérald Thouand, co-direction Jacques L’haridon, 15 décembre 2017, actuellement CDI L’Oréal

2016

BRILLET François, Nouvelles stratégies d'évaluation de la biogégradation de substances organiques dans le cadre de la directive européenne REACH, thèse financement : Région-L'Oréal, Direction Gérald Thouand, 5 juillet 2016, actuellement en poste chez L’Oréal à Singapour.

HDR soutenues
- DURAND Marie José, Bioessais et biocapteurs appliqués à l’évaluation des dangers en écotoxicologie, soutenue le 5 juillet 2017 à l’IUT de a Roche sur Yon.
- GERENTE Claire, Développement d’adsorbants à faible impact environnemental et réutilisation d’eaux usées traitées pour la préservation des ressources, soutenue le 27 juin 2016.
Equipe OSE
« Optimisation – Système – Energie »

Responsable : Lionel Boillereaux (ONIRIS)
Co-responsable : Nadine Allanic (IUT de Nantes)

Présentation de l’équipe

<table>
<thead>
<tr>
<th>Chercheurs et enseignantschercheurs permanents</th>
<th>Personnel technique (non administratif)</th>
<th>Doctorants</th>
<th>Post-Doctorants</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>12</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>(dont 13 soutenues)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chercheurs et enseignants-chercheurs permanents

- Nadine ALLANIC MCF, HDR, Université de Nantes
- Sofiane BELHABIB MCF, Université de Nantes
- Yves BEREAUX (arrivée sept. 2018) MCF, HDR, Université de Nantes
- Lionel BOILLEREAUX Professeur, ONIRIS
- Bernard BOURGES (départ en retraite) Professeur, IMT Atlantique
- Cécile CANTO MCF, Université de Nantes
- Gaël COLOMINES (50% MAPS²) MCF, Université de Nantes
- Sébastien CURET-PLOQUIN MCF, ONIRIS
- Rémi DETERRE (50% MAPS²) Professeur, Université de Nantes
- Francine FAYOLLE Professeur, ONIRIS
- Pierrick HAURANT (arrivée sept. 2016) MA, IMT Atlantique
- Michel HAVET Professeur, ONIRIS
- Bruno LACARRIERE Professeur, IMT Atlantique
- Patrick LEGENTILHOMME Professeur, Université de Nantes
- Pierre MOUSSEAU Professeur, Université de Nantes
- Isabelle PETIT MCF, Université de Nantes
- Olivier ROUAUD Professeur, ONIRIS
- Alain SARDA MCF, Université de Nantes
- Camille SOLLIEC Professeur, IMT Atlantique
- Cyril TOUBLANC MCF, ONIRIS
- Philippe VACHOT MCF, Université de Nantes
- Francis YGUEL (départ en retraite) DR, CNRS
Personnel technique

Les personnels techniques d’ONIRIS et de l’IUT de Nantes participent à la fois aux activités des équipes OSE et MAPS² (quotité de travail réalisées pour chaque équipe fonction des compétences individuelles et natures des projets de recherche)

Patrick CORBIERE TFR, ONIRIS
Daniel COUDEDEL IR, Capacités
Christophe COUDEDEL TFR, ONIRIS
Luc GUIHARD IE, ONIRIS
Claire GUYON IE, ONIRIS
Julien LAUNAY IR, Capacités
Yannick MADEC IE, Université de Nantes
Michèle. MOREAU TFR, ONIRIS
Anthony OGE IE, ONIRIS
Christophe PLOT IR, Université de Nantes
Delphine QUEVEAU AI, ONIRIS

Personnels techniques non permanents

Christophe CHOIMET de janvier 2016 à avril 2018 IE, ONIRIS
Elise MOUCHARD de janvier 2014 à novembre 2017 IR, Université de Nantes

Doctorants

2. Ivan ANDRIG (SELECT+, Veolia) : The assessment of district heating potential in a context of climate change and building renovation, Directeur : P. Ferrao (40%, IST Lisbon), Co-directeur O. Le Corre (30%), Co-encadrant B. Lacarrière (30%), soutenue le 22 Septembre 2017

3. Deyae BADRI (Bourse Ademe) – Optimization of defrosting operations of industrial freezers - Directeur : M. Havet (40%) – Co-directeur : O. Rouaud (30%) – Co-encadrant : C. Toublanc (30%) – début 1er octobre 2018

6. Roua BOU-ORM (bourse CIFRE) : Etude de la formation de la croute d’un produit de panification – Thèse collaborative équipes MAPS / OSE. Directeur : Alain le Bail (MAPS 40%) - Co-directeur : L. Boillereaux (OSE 30%) – Co-encadrante : V. Jury (MAPS 30%) – début 1er septembre 2018

9. Clarissa DETOMI de ALBUQUERQUE (Bourse CNPq Brésil) – Pasteurisation microondes de viande hachée – étude numérique et expérimentale – Directeur : L. Boillereaux (60%) – Co-encadrant : S. Curet-Ploquin (40%) – début 1er octobre 2015

12. Timothée GALLY (Bourse Région + projet européen) : Études expérimentales et numériques du procédé de chauffage ohmique appliqué à la panification - Thèse collaborative équipes MAPS / OSE. Directeur : Michel Havet (40%) – Co-directeur : O. Rouaud (30%) – Co-encadrante : V. Jury (MAPS 30%) – soutenue le 27 octobre 2017

13. Valérie GUYONNY (Salarisée entreprise) : Conception et développement d’un système de foisonnement continu innovant – Thèse collaborative équipes MAPS/OSE/INRA. Directeur : O. Rouaud (40%), Co-directeur : P. Le-Bail (INRA 30%) – Co-encadrante : V. Jury (MAPS 30%) – début le 1er septembre 2017

14. Monique KHODEIR (Bourse Région) – Conception et développement d’un système de foisonnement continu innovant – Thèse collaborative équipes MAPS/OSE/INRA. Directeur : O. Rouaud (40%), Co-directeur : P. Le-Bail (INRA 30%) – Co-encadrant : V. Jury (MAPS 30%) – début 1er septembre 2017

15. Ali HEDAYATI (SELECT+), On-site pure hydrogen production in a catalytic membrane reactor by ethanol steam reforming, Directeur: J. Lorca (40%, UPC Barcelona), Co-directeur: O. Le Corre (30%), Co-encadrant B. Lacarrière (30%), soutenue le 26 septembre 2016

16. Moaine JEBARA (projet Ecother) : Optimisation et contrôle thermique des outillages dans la mise en œuvre des polymères. Directeur : L. Boillereaux (40%) – Co-directeur : M. Havet (30%) – Co-encadrant : S. Belhabib (30%), soutenu le 19 décembre 2017

20. Mathieu SADOT (Bourse Era-net Susfood) – Étude numérique et expérimentale d’un procédé de congélation assistée par micro-ondes – Directeur : M. Havet (40%) – Co-directeur : O. Rouaud (30%) – Co-encadrant : S. Curet-Ploquin (30%) – soutenue le 24 septembre 2018

Séjours de doctorants au sein de l’équipe OSE :

Post-doctorants et chercheurs seniors accueillis

Post-doctorants

1. Mohamed DRISSI (février 2017 à janvier 2018), dans le cadre du projet Decongelathon (Modélisation des procédés de décongélation du thon), convention de partenariat technique GEPEA-ONIRIS, PFI Nouvelle Vague, CITPPM.

Chercheurs seniors accueillis

1. Eric BARDY, Professeur à Grove City College (mai-juin 2017&2018)
Politique scientifique

Missions et objectifs scientifiques

L'équipe OSE a pour mission principale de contribuer à l'optimisation des procédés et systèmes dans l'objectif d'en améliorer l'efficacité énergétique tout en préservant la qualité des produits, matériaux ou services. La modélisation, la simulation et l'optimisation numérique, le développement de solutions de métrie adaptées et d'outils de contrôle sont des moyens pour répondre efficacement à cet objectif par le développement de nouvelles technologies. Dans le cadre des problématiques actuelles de transitions énergétique et environnementale, d'économie, de qualité et de sécurité, l'amélioration de l'efficacité énergétique est une approche systémique résolument multi-échelle (spatiale et temporelle), multi-physique, et, forcément multi-critères. Le principal défi de la modélisation multi-échelle appliquée à l'intégration énergétique réside dans le développement de méthodologies et d'outils permettant le passage d'échelles tant les phénomènes mis en jeu sont nombreux et complexes, avec des dynamiques différentes. L'un des enjeux est de lier les différents niveaux de description en utilisant une bonne information pour passer d'une échelle à l'autre sans discontinuité et en permettant des temps de calculs acceptables.

La problématique scientifique relève des domaines de la thermique, de l’énergétique, des phénomènes de transfert, de l’automatique, de la mécanique des fluides appliquées aux procédés thermiques et aux systèmes énergétiques en réseaux. L'équipe développe alors des solutions et outils numériques pour la simulation, l'optimisation et le contrôle des procédés et systèmes. Son champ d'activité s'étend jusqu’au développement de capteurs et prototypes permettant la validation expérimentale des concepts et modèles. Souvent liées à des problématiques à différentes échelles, spatiales ou temporelles, les applications visées relèvent principalement des secteurs de l’agroalimentaire - procédés électrothermiques (micro-ondes, chauffage ohmique, EHD,...) - des matériaux (procédés de mise en œuvre des matériaux polymères, extrusion, injection,...), et de l’énergie (systèmes énergétiques en réseaux, réseaux de chaleur).

Orientations et choix stratégiques

La stratégie de l'équipe OSE est de contribuer à l’amélioration de l’efficacité énergétique des procédés et systèmes, en intervenant à plusieurs échelles :

- **A l'échelle locale**, il s’agit d'intensifier les transferts, notamment par l’utilisation de technologies innovantes (détailles plus loin), et d’autre part à adapter les procédés à des fluides complexes et des matériaux évolutifs chimiquement, instables dans leurs compositions (recyclés) ou dans leurs comportements. L’approche retenue est une approche systémique, dans laquelle les chercheurs s’appliquent à comprendre et mettre en équation les phénomènes complexes mis en jeu, et à développer des solutions numériques pour la simulation, la prédiction ou la commande. Pour intensifier les transferts, deux voies sont étudiées :
 - L’approche aux interfaces, qui concerne essentiellement les échanges convectifs. Il s’agit de perturber la couche limite par des approches de type jets en impact, électrohydrodynamique (vent ionique). L’amélioration des échanges requiert alors une analyse fine des interactions entre le milieu ambiant et les écoulements secondaires générés, notamment l’effet de la température sur ces échanges et l’influence des structures turbulentes sur les transferts pariétaux.
 - L’approche produit / matériau qui consiste à exploiter au mieux les propriétés physiques des matériaux (diffusivité thermique, viscosité, réactivité chimique, évolution physico-chimique, propriétés diélectriques, …). A titre d’exemple, citons les microondes permettent d’exploiter les fortes propriétés diélectriques d’une large gamme de produits (alimentaires, polymères) afin de produire un chauffage volumique. Les transferts couplés masse chaleur sont résolus simultanément avec les équations de Maxwell qui décrivent l’évolution du champ électrique dans le produit. La complexité est renforcée par la forte dépendance des propriétés diélectriques à la température et à la teneur en eau. Enfin, les phénomènes physiques décrits ci-dessus font également l’objet d’un couplage avec des phénomènes microbiologiques, chimiques ou biochimiques. En effet, l’efficacité énergétique visée ne doit pas faire oublier la
finalité de l’application (inactivation enzymatique, destruction de micro-organismes, polymérisation, …). D’autres illustrations sont l’étude des phénomènes de dissipation visqueuse dans les fluides complexes ou l’utilisation de la réactivité chimique du matériau.

A l’échelle du procédé, une approche physique plus macroscopique est considérée, intégrant modèles multi-physiques, métrie avancée, méthodes d’optimisation ou de commande des procédés s’appuyant sur des analyses multi-critères avec pour objectif la mise en œuvre des technologies innovantes, ou l’utilisation des technologies déjà existantes.

Dès lors que les temps de calcul ne sont pas pénalisants, la finesse des modèles multiphysiques développés à l’échelle locale pour la compréhension des phénomènes est conservée dans les outils de prédiction à des fins d’optimisation et de commande. Dans le cas contraire, des approches plus globales ou des réductions / simplifications de modèles sont réalisées. De même, les dispositifs expérimentaux développés à l’échelle du laboratoire peuvent s’éloigner fortement des conditions industrielles (incertitudes plus importante sur les paramètres, contraintes supplémentaires sur les mesures, …) et nécessiter des approches plus pragmatiques et des développements expérimentaux intermédiaires.

A titre d’exemple, nous pouvons donner l’exemple de l’utilisation de modèles ARMAX permettant de s’affranchir de la description fine du comportement thermocinétique du matériau (thèse M. Jebara, projet ECOTHER) à des fins de commande prédictive de la température de surface des plateaux chauffants.

L’intégration énergétique optimale largement abordée par les membres de l’équipe OSE est au cœur des problématiques. Elle se décline à l’échelle des procédés, des ateliers mais également à l’échelle des systèmes énergétiques en réseau. Mesurer sur des temps courts puis prédire sur des temps longs les consommations/productions des systèmes en fonction des scénarios et configurations de fonctionnement est un enjeu essentiel de ce changement d’échelle. Partant ainsi du procédé, l’objectif premier est d’identifier les événements qui génèrent des pics de consommation afin d’éviter leur apparition simultanée dans un cycle de production et ainsi lisser les consommations. Sur cette thématique, les collaborations initiées avec le laboratoire des Sciences du Numérique de Nantes (LS2N) sur la simulation des flux de production sur critères énergétiques ont permis de mettre en place une méthodologie basée sur un cas d’étude lié à la mise en œuvre des polymères.

Les réseaux énergétiques et les systèmes qui leur sont raccordés reflètent bien ce concept d’intégration énergétique multi-échelles. Ils constituent d’une part un macro système qui permet les échanges d’utilités entre plusieurs nœuds représentant de façon plus ou moins hétérogène des points de consommation, de production, de stockage, de flexibilité… D’autre part, ils sont constitués d’un ensemble de sous-systèmes eux-mêmes objets d’optimisation locale de leur performance.

L’équipe OSE développe ses activités avec pour champs d’application les procédés thermiques de l’agroalimentaires, les procédés de mise en œuvre des matériaux, les réseaux de chaleur urbains et le stockage d’énergie. Dans ce qui suit, les principales applications, leurs objectifs et résultats, sont décrits.

Thème « Procédés électro-thermiques de l’agroalimentaire »

Les procédés électrothermiques tels que EHD, ohmiques ou microondes appliqués aux matrices alimentaires sont une réponse pertinente à l’amélioration des transferts ou à l’exploitation des propriétés des aliments pour générer un chauffage volumique. Les micro-ondes exploitent la caractéristique dipolaire du composant majoritaire de l’aliment, à savoir la molécule d’eau, tandis que le chauffage ohmique est rendu possible par la résistance électrique des produits. Dans les trois approches, une part importante des activités concerne la résolution numérique de modèles.
multiphysiques complexes, avec également des développements expérimentaux poussés permettant leur validation.

Pour les microondes, l’équipe a démarré les travaux en 2003 et s’intéresse au suivi de cinétique des procédés de chauffage ou de tempérage, mais également au couplage avec des modèles microbiologiques ou enzymatiques dans un souci d’amélioration des opérations de pasteurisation, et ce sur des produits solides, liquides ou solides divisés.

Pour le procédé ohmique, les travaux démarrés en 2014 ont consisté en une étude de faisabilité sur la fermentation et la cuisson de pain de mie sans croûte. Les résultats prometteurs, laissant entrevoir des gains énergétiques potentiels d’un facteur 10, ont conduit au développement d’un four pilote.

Le procédé EHD est également un procédé prometteur et étudié depuis de nombreuses années au GEPEA. Grâce à la génération d’un vent ionique via une haute tension, les forts débits d’air utilisés dans les procédés convectifs peuvent être drastiquement réduits tout en conservant un coefficient d’échange convectif satisfaisant. Le fort potentiel de ce procédé sur le plan de l’efficacité énergétique
a été démontré par des analyses énergétiques et exergétiques sur un banc de séchage développé au laboratoire, et en outre, il a également montré un impact positif sur la qualité des produits traités.

Thème « Procédés de mise en œuvre des matériaux »

Lors de leur mise en œuvre, les matériaux polymères subissent différentes transformations imposées par des cycles de chauffage et de refroidissement, réalisées avec ou sans pression. De ce fait, la maîtrise du comportement thermocinétique et thermorhéologique du matériau est essentielle pour assurer la qualité des pièces finales et optimiser la dynamique des transferts durant le procédé.

L’une des difficultés majeures outre la complexité des phénomènes physiques mis en jeu est d’établir les liens entre des critères qualité relatifs à des propriétés d’usage, et les propriétés du matériau, voire l’état du réseau macromoléculaire pour en déduire les conditions optimales de mise en œuvre. S’appuyant sur des expertises précédemment développées au sein du laboratoire dans le cadre de projets industriels, divers travaux sont en cours pour établir le lien entre le comportement thermocinétique des polymères et propriétés de tenue mécanique.

De plus, que ce soit pour réduire les temps de mise en régime, réduire les déperditions thermiques, obtenir un meilleur contrôle thermique à l’interface pièce-moule ou intensifier les transferts de chaleur en paroi, les raisons d’améliorer et de repenser la conception, l’instrumentation et la régulation des outillages tels qu’utilisés actuellement en industrie sont nombreuses. Les objectifs sont certes liés à une volonté générale d’amélioration de l’efficacité énergétique mais concerne aussi la maîtrise des transferts de chaleur lors des phases dynamiques de chauffage et de refroidissement et du cyclage des procédés. Plusieurs stratégies ont été étudiées pour améliorer les systèmes de chauffage des procédés de mise en œuvre de caoutchoucs et intensifier les transferts dans les systèmes de refroidissement des procédés de mise en œuvre de composites thermoplastiques haute température.
Enfin, parce que les polymères sont des fluides très visqueux au comportement fortement non-newtonien, nos efforts se sont en partie consacrés à développer des outils de caractérisation thermorhéologique originaux permettant une analyse directement sur machine de mise en œuvre. Des mesures d’autoéchauffement par dissipation visqueuse et des mesures de viscosité dans des conditions réelles de mélangeage et de fonctionnement ont ainsi pu être réalisées et validées soit par des modèles analytiques soit par des simulations numériques.

Avec l’achat d’un extrudeur par Oniris fin 2017, la compétence sur l’extraction s’élargie à des applications alimentaires, avec notamment la texturation des protéines végétales (en lien avec l’équipe MAPS).

Thème Systèmes Energétiques en Réseaux

Dans une approche de modélisation, simulation et optimisation, chacune des échelles telles qu’elles ont été mentionnées plus haut, nécessite d’être représentée de façon suffisamment précise, en mobilisant un nombre de paramètres descriptifs judicieusement choisis pour permettre le passage à l’échelle supérieure, compatibles avec les contraintes numériques. Cela passe par une modélisation des sous systèmes, et de leur dynamique propre, et par une stratégie de modélisation du macro système, de dynamiques composites, adaptée aux objectifs opérationnels (design,
contrôle, pilotage...). Enfin, les modèles développés doivent également intégrer les contraintes techniques et celles liées aux objectifs opérationnels. La figure ci-dessous schématisse l’approche mise en œuvre dans l’équipe.

Figure 6 : Intégration énergétique multi-échelle.

Les points rouges représentent les échelles et énergies traitées dans l’équipe.

Avec un point d’entrée historique via les réseaux de chaleur urbains, l’équipe de IMT Atlantique qui travaille sur cette thématique affiche plus de dix ans d’expérience de modélisation et d’optimisation de ce type de systèmes, en abordant les éléments de production et de distribution, ainsi que les déterminants de la demande et les éléments de contexte qui impactent l’accès aux données, en intégrant la diversité des objectifs opérationnels propres à ces systèmes.

Dans une approche résolument systémique, les travaux réalisés mobilisent des compétences en énergétique des systèmes (multi-énergie), mécanique des fluides, thermique, analyse de données, méthodes de modélisation et d’optimisation, contrôle-commande des systèmes.

La figure ci-dessous est un exemple de l’intégration énergétique des réseaux de distribution électrique couplés aux réseaux de chaleur qui illustre bien les problématiques traitées dans l’équipe. Un réseau composite est constitué de nœuds consommateurs, producteurs (ou les deux de façon intermittente), au travers de systèmes de production et de stockage qui couplent les deux énergies. Les deux énergies présentées sont par ailleurs caractéristiques de la problématique de dynamiques de systèmes contrastées.
Figure 7 : Méthodologie de simulation de réseaux multi-énergies

L’aspect pluridisciplinaire du thème traité permet de plus la mise en place de collaborations internes à l’équipe OSE en considérant les échelles communes aux différentes activités de l’équipe. Cela a permis, par exemple, le démarrage à venir d’un travail commun avec les équipes d’Oniris sur les stratégies de contrôle prédictif des pompes à chaleur dans une perspective de leur intégration dans les réseaux multi-énergie.
Bilan général d’activité et faits marquants de la période 2016-2018

Bilan général d’activité de l’équipe

Dans ce qui suit est décliné le bilan sur la période 2016-2018, en se concentrant sur les 3 grandes thématiques que sont procédés électrothermiques, procédés de mise en œuvre des matériaux et les systèmes énergétiques en réseaux mais aussi sur la mise en place d’un thème transversal visant à plus de synergie entre les 3 sites.

Ainsi, dans le domaine des microondes, de nombreux projets ont été menés, avec des collaborations sur le plan local avec l'équipe MAPS (thèse M. Sadot). Sur le plan international, on peut noter une thèse (M. Kubo) en cotutelle avec l’Université de Sao Paulo, des collaborations avec l’Université de Cordoba (Argentine, thèse P. Meriles) et de nombreux échanges avec l’université fédérale de Santa Catarina (Brésil). Notamment, les derniers résultats ont ainsi permis de démontrer l’efficacité du traitement thermique par micro-ondes dédié à l’inactivation enzymatique dans des jus de fruit ou encore l'inactivation bactérienne dans la viande hachée.

Pour ce qui concerne le chauffage Ohmique, on peut souligner la thèse de T. Gally (2017) qui illustre pleinement les collaborations Procédé/Produit avec l’équipe MAPS, tout comme celle de M. Khodeir 2017 – 2020 qui vise à utiliser ce principe de chauffage en continu à des fins de fabrication additive. Pour le procédé EHD, un travail collaboratif avec l’Université d’Ispahan (Iran) et le professeur associé E. Bardy (Grove City College, USA) autour de la thèse de Taghian Dinani accueillie au GEPEA durant 12 mois, a notamment permis de mettre en évidence que l’intensification des transferts à l’interface air/produit engendre de nouvelles cinétiques de séchage qui n’altèrent pas les propriétés physicochimiques des produits traités.

Figure 8 : Exemple de simulation d’un moulage de pièces caoutchoucs avec prise en compte de la régulation des plateaux de presse simulé avec le logiciel développé dans le cadre du projet ECOTHER.

143
La thématique Systèmes Energétiques en Réseaux, portée par IMT Atlantique, a permis la réalisation de nombreux travaux en partenariat.

Enfin, même si cela n’a pas été expressément décrits dans les grandes thématiques de l’équipe OSE, il est important de faire état ici de résultats dans le domaine du stockage de l’énergie, notamment via une collaboration menée depuis 2014 avec l’entreprise SEGULA autour de la technologie de stockage d’énergie en mer par air comprimé REMORA. Basée sur le principe de compression et détente quasi isotherme d’air par piston liquide, cette solution a fait l’objet de travaux du laboratoire l’optimisation de l’efficacité énergétique du système par l’étude des échanges thermiques de l’air lors de sa compression ou détente en utilisant de l’eau comme piston dans une colonne fermée. Les études ont notamment demandé la réalisation et l’exploitation d’un banc d’essai instrumenté de 6m de haut pour l’étude de l’évolution thermodynamique de l’air en compression. Les travaux se poursuivent actuellement par la construction d’un nouveau dispositif expérimental permettant la mesure des champs de vitesses internes de l’air par méthode PIV. De plus, dans le cadre d’un projet collaboratif lauréat d’un appel à projet ADEME et nommé ODySEA, le laboratoire (au travers d’ARMINES et de l’IMTA) a réalisé le développement et l’étude expérimente des chambres de compression/détente prenant place dans le prochain démonstrateur de la technologie.

Nouvellement créée au 1er janvier 2017, l’équipe OSE s’est fixé également comme objectif de ne pas être la juxtaposition des 3 grandes thématiques précédemment évoquées, mais de mettre en synergie les compétences présentes sur les 3 sites au service des projets existants tout en faisant éclore de nouveaux projets interdisciplinaires. La première action a été de mettre en place dès le début deux sujets de Master intersites conjointement financés sur fond propre (Eliane Younes, 2017 ; Wassim Ammar, 2018) autour de la thématique de l’homogénéisation et l’intensification des transferts par jets impactants. Ainsi, en 2017, sur un dispositif d’homogénéisation basé sur un écoulément axial, il s’agissait de déterminer la répartition des trous et les caractéristiques des jets impactants. En 2018, un four à jets impactants développé dans le cadre du projet ANR BRAISE (2009-2013) a été réinvesti en tant que procédé original de post-cuisson pour induire la recristallisation du PLA et identifier les paramètres du procédé les plus influents. L’analyse des cinétiques de température et de cristallisation a notamment montré que cette dernière intervient.
principalement pendant la phase transitoire et non pas à température constante et qu’un chauffage à 92°C seulement permet une cristallinité maximale.

Faits marquants de la période 2016-2018

- **Accréditation du Master of Science International PM3F** (Master 2 Project Management for Food Factories of the Future) cohabilité avec IMT Atlantique et Polytech’Nantes.

- **Projet ECOTHER**, Porté par le GEPEA, ce projet ISI financé par la BPI (1,6 M€) impliquant un consortium d’industriels de la filière caoutchouc et composites s’est déroulé de 2014 à 2018. Impliquant plusieurs partenaires académiques, il a concerné pour le GEPEA 4 thèses.

- Des chercheurs de l’équipe OSE impliqués dans le **Projet FREEZEWAVE** porté par l’équipe MAPS2 (encadrement travaux de thèse de M. Sadot)

- **Projet ODySEA**, projet ADEME en partenariat avec l’entreprise SEGULA, Optimisation d’une chaîne multiphysique de conversion d’énergie pour le stockage d’énergie en mer par air comprimé

- **Projet MEPS** : projet CNRS Ingénierie Verte en partenariat avec le LS2N. A partir de l’analyse d’un procédé d’injection thermoplastique, l’apport de la modélisation multiphysique dans la simulation de flux de production pour définir des gains et critères de consommations énergétiques est étudié.

- **Projet SELECT+**, projet européen financant un réseau de 8 universités sur le thème de la polygénération et l’intégration énergétique des systèmes et réseaux

- **Projet MySMARTLife**, projet européen Smart Cities and Communities sur l’apport des TIC sur l’efficacité énergétique de la ville.

- **Mise en place de nouvelles collaborations internationales** et publications communes avec l’Université de Sao Paulo, l’Université de Cordoba en Argentine et Grove City College (Pennsylvanie, USA)

- Recrutements, promotions et nouvelles arrivées :
 - Yves Béreaux : MCF, Université de Nantes
 - Pierrick Haurant : Enseignant-chercheur IMT Atlantique
 - Olivier Rouaud : Professeur (ex MCF) à Oniris
Analyse SWOT

<table>
<thead>
<tr>
<th></th>
<th>Forces</th>
<th>Faiblesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interne</td>
<td>- Une homogénéité de l'équipe dans les compétences Sciences pour l'Ingénieur et génie des procédés en général</td>
<td>- Équipe répartie sur 3 sites</td>
</tr>
<tr>
<td></td>
<td>- Un spectre large de spécialités ou spécificités des membres offrant de nombreuses possibilités de collaborations intra et inter équipes.</td>
<td>- Le positionnement et les compétences des chercheurs d'Oniris appartenant à OSE résolument tournées vers le génie des procédés moins prégnant dans les IAA. OSE parfois en appui de MAPS²</td>
</tr>
<tr>
<td></td>
<td>- Des domaines d'application variés favorisant l'émergence de technologies de rupture</td>
<td>- Actuellement, pas suffisamment d'approches méthodologiques entre les différentes applications traitées dans les différents sites (notamment polymère et alimentation)</td>
</tr>
<tr>
<td>Externe</td>
<td>Opportunités</td>
<td>Menaces</td>
</tr>
<tr>
<td></td>
<td>- Isite Next, thématique Usine du Futur : potentiellement un positionnement fort de l'équipe sur ce sujet</td>
<td>- Contexte multi-tutélaire complexe et mouvant : des rapprochements d'établissements rendent notamment la visibilité sur l'avenir d'Oniris trouble.</td>
</tr>
<tr>
<td></td>
<td>- Contexte environnemental global qui devrait favoriser des projets de OSE</td>
<td>- Risque de ne pouvoir faire émerger des thématiques / projets intersites au sein de l'équipe.</td>
</tr>
<tr>
<td></td>
<td>- Des collaborations internationales à développer et consolider à travers des appels d'offre internationaux</td>
<td></td>
</tr>
</tbody>
</table>
Perspectives de l’équipe

L'équipe OSE a pour perspectives d'une part la consolidation des thématiques sur lesquelles les différentes composantes de l'équipe sont reconnues, à savoir les procédés électro-thermiques de l'agroalimentaire sur le site d'Oniris, les procédés de mise en œuvre des matériaux sur le site de l'IUT de Nantes et enfin l'optimisation et le contrôle des réseaux énergétiques pour IMT Atlantique, mais aussi d'autre part de renforcer la mise en commun des compétences de chacun au service des projets existants et également le développement de nouvelles thématiques.

Figure 9 : Compétences et thématiques de l’équipe OSE

En effet, constat a été fait que si les domaines applicatifs sont différents, les échelles également, un point de convergence concerne l’asservissement du procédé ou du système non plus à partir de paramètres ou variables type « process », mais à partir de variables type « qualité/propriété produits/matériaux » ou « qualité de service ». Cette approche qui vise à être au plus près des attentes client ou consommateurs mais aussi permet d’éviter des sur-traitements énergétiques ou thermiques guidés le plus souvent par le souci de conserver une marge de sécurité, et qui sont un des facteurs de détérioration de l’efficacité énergétique. A titre d’exemple, on peut citer les travaux sur les procédés de traitement par microondes, où l’objectif de contrôle est l’inactivation effective et non plus une trajectoire thermique à poursuivre absolument, ou dans le domaine des matériaux, les efforts de recherche pour réussir à acquérir une information en cours de mise en œuvre représentative de l’état d’avancement de vulcanisation et ce malgré la très faible enthalpie de réaction (~10J/g) lors de la cuisson d’élastomères. À terme, cela doit permettre de réaliser une diminution significative sur les temps de cycles. On peut également citer le nouveau projet ADEME FOODFREEZE qui vise à piloter les surgélateurs industriels (cycles de dégivrage, vitesse d’air, température, …) à partir de données énergétiques mais aussi de données sur le produit. De même le pilotage des systèmes de production d’énergie (EnR ou non, intermittents ou non), illustrent le besoin d’un contrôle « au plus juste » des capacités pour un service énergétique constant, à moindre coût (économique et environnemental).
Pour atteindre de tels objectifs, la modélisation des phénomènes à l’échelle locale tout comme la réduction de modèles pour permettre des applications temps réel sont des étapes incontournables. Une étape importante alors pour cette commande réside dans la disponibilité en temps réel de données « produit/matière/service » pertinentes. Ainsi, on peut alors obtenir ces données via des mesures on-line sur le produit/matière, soit directes, soit indirectes obtenues à partir des informations disponibles permettant la mise en place de capteurs logiciels. L’arrivée au sein de l’équipe d’Yves Bereaux, MCF HDR en mutation venant de l’INSA de Lyon va permettre de renforcer les développements en lien avec la mise en œuvre des matériaux recyclés ou biosourcés aux propriétés variables et au comportement fluctuant nécessitant une adaptation en temps réel des paramètres process. Enfin, à l’échelle des réseaux énergétiques, une des sorties à piloter est le niveau de service (puissance délivrée, énergie produite, réponse à la demande, minimisation des impacts...), une grandeur qui elle aussi peut faire l’objet de mesures indirectes ou de capteurs intelligents. L’ensemble des compétences développées sur le thème de la métrologie permet aujourd’hui d’avancer des travaux pour déployer l’ensemble de la chaîne de mesure et de l’impact de sa qualité. On peut citer pour répondre à des contraintes d’encombrement, procédés dynamiques, arrachement, ..., les solutions de transmissions sans fil du signal mesuré en cours de développement dans le cadre de la thèse de Queen Tannous qui doivent nous permettre de mettre en place des solutions de supervision des process.

Produits et activités de recherche

Période de référence : 2016-2018

Equipe OSE

Journaux / Revues

Articles scientifiques

2018

[7] Timothée Gally, Olivier Rouaud, Vanessa Jury, Michel Havet, Anthony Ogé, et al.. Le chauffage ohmique pour optimiser la consommation énergétique de la production de pain de mie sans croûte. Industries des Céréales, 2018, pp.30–33. [hal–01959999](https://hal.archives-ouvertes.fr/hal-01959999)

2017

2016

[41] Alain Le–Bail, Vanessa Jury, S. Chevallier, Jean–Yves Monteau, Olivier Rouaud, et al.. Bread crust; A hot topic. Baking Europe, 2016, pp.40–43. ⟨hal–01670716⟩

Articles de synthèse / revues bibliographiques

Autres articles (articles publiés dans des revues professionnelles ou techniques, etc.)

2017

Ouvrages

Direction et coordination d’ouvrages / édition scientifique

2016

Chapitres d’ouvrage

Colloques / congrès, séminaires de recherche

Éditions d’actes de colloques / congrès

Articles publiés dans des actes de colloques / congrès

2018

[2] Mathieu Sadot, Olivier Rouaud, S. Chevallier, Sébastien Curet, Alain Le Bail, et al.. Influence of microwaves on the size of ice crystals during innovative food freezing. the 32th EFFoST International Conference, Nov 2018, Nantes, France. ⟨hal–01964325⟩

IV Congresso Argentino de Ingeniería, X Congresso Argentino de Enseñanza de la Ingeniería (4º CADI y 10º CAEDI), Sep 2018, Cordoba, Argentina. ⟨hal–01959568⟩

2017

[16] Mathieu Sadot, Sylvie Chevallier, Sébastien Curet, Olivier Rouaud, Alain Le–Bail, et al.. 3D imaging analysis method to measure ice crystal size.. 31st EFFoST International Conference, Nov 2017, sitges, Spain. ⟨hal–01833524⟩

[18] Sylvie Chevallier, Piyush Kumar Jha, Alain Le Bail, Olivier Rouaud, Vanessa Jury. X–ray micro–tomography and enhancement methods to study food structure. 10th World Congress on Chemical Engineering (WCCE), Oct 2017, Barcelona, Spain. ⟨hal–01928437⟩

[26] Timothée Gally, Olivier Rouaud, Vanessa Jury, Alain Le–Bail, Michel Havet. Ohmic heating applied to the baking process: experimental and numerical approaches. 11th European PhD Workshop on Food Engineering and Technology, Apr 2017, singen, Germany. ⟨hal–01833539⟩

2016

[29] Rodrigo Diaz, Gaël Colomines, Edith Peuvrel–Disderi, Rémi Deterre. The role of processing parameters in an industrial thermo–mechanical devulcanization process. 12th Rubber Fall Colloquium, Nov 2016, Hannover, Germany. <hal–01500717>

[30] Lionel Boillereaux, S. Curet. Microwave processing: from modelling to control – example of solid food pasteurization. VI Congreso Internacional de Ciencia y Tecnología de los Alimento (cicytac), Nov 2016, Cordoba, Argentina. <hal–01959599>

[32] Mathieu Sadot, Sébastien Curet, Alain Le Bail, Michel Havet. Modélisation d’un procédé de congélation assistée par micro-ondes. congrès français de thermique, May 2016, toulouse, France. ⟨hal–01833315⟩

Communications avec ou sans actes

2018

[1] Lionel Boillereaux, M.T.K. Kubo, S. Curet, P.E.D. Augusto. Inactivation of peroxidase by microwave processing: development and validation of a kinetic model. 32th EFFoST International Conference: Developing innovative food structures and functionalities through process and reformulation to satisfy consumer needs and expectations, Nov 2018, Nantes, France. ⟨hal–01959557⟩

[2] Lionel Boillereaux, Sébastien Curet, C. Detomi de Albuquerque. Evaluation of non–thermal effects during microwave heating applied to E. Coli inactivation in ground beef. 32th EFFoST International Conference: Developing innovative food structures and functionalities through process and reformulation to satisfy consumer needs and expectations, Nov 2018, Nantes, France. ⟨hal–01959551⟩

2017

[5] Timothée Gally, Olivier Rouaud, Vanessa Jury, Alain Le Bail, Michel Havet. 3D Numerical modelling of crustless bread baking with ohmic heating technology. 31st EFFoST International Conference 2017, Nov 2017, Sitges, France. 〈hal–01969500〉

[8] Timothée Gally, Olivier Rouaud, Vanessa Jury, Alain Le Bail, Michel Havet. Ohmic baking; a review based on recent investigations for crustless bread production. AACC International Annual Meeting, Oct 2017, San Diego, United States. 〈hal–01969186〉

[9] S. Curet, K. El Mecherfi, Olivier Rouaud, Lionel Boillereaux. Microwave heating vs. conventional heat exchangers to improve the liquid food product processing. 10th World Congress of Chemical Engineering (WCCE10), Oct 2017, Barcelona, Spain. 〈hal–01959594〉

[10] M.T.K. Kubo, L.R.P. Silva, P.E.D. Augusto, S. Curet, Lionel Boillereaux. Dielectric Properties of model fruit juices as a function of frequency, temperature and sugar content: prediction via Artificial Neural Networks and comparison to real fruit juice. 10th World Congress of Chemical Engineering (WCCE10), Oct 2017, Barcelona, Spain. 〈hal–01959592〉

Brevets, licences et déclarations d’invention

Contrats de recherche financés par des institutions publiques ou caritatives

Contrats européens (ERC, H2020, etc.) et internationaux

- SELECT+ (Erasmus Mundus Joint Doctorate), 2012-2020
- MySMARTLife (H2020 Smart Cities and Communities), 2016-2021

Contrats nationaux

- PLATE FORME INNOVATION NOUVELLES VAGUES CITPPM (S CURET) – (2016-2018) 78 k€
- Projet BPI ECOTHER Coordinateur P. Mousseau. (2014-2017) 1600 k€
Interactions avec les acteurs socio-économiques

RFI :
- RFI AF – (S CURET) Contrat de recherche en partenariat INRA NANTES (2016-2018) 9 k€
- 2.3 FOAM (A LEBAIL ET O ROUAUD) Contrat de recherche en partenariat (2017-2020) 80 k€

Contrats de R&D avec des industriels
- Veolia
- LEMPA (O. Rouaud) Efficacité énergétique en boulangerie (2015-2016) 12 k€
- BIP (O. Rouaud) Séchage de la prune d’ente (2015-2016) 55 k€
- SEB (M. Havet, C. Toublanc) Optimisation d’un système de moussage (2016-2018) 80 k€
- LAITA – (S CURET) (2016) 4,8 k€
- MECATHERM (O ROUAUD) Cinétiques de cuisson (2017-2019) 49 k€
- SOL (O ROUAUD) Cryogénie (2010-2016) 62 k€

Bourses Cifre
- Vibracoustic (thèse M. Legal)
- Delta International coorporation (thèse Q. Tannous)

Organisation de colloques / congrès
- Journée SFT ’Thermique et Agro-Alimentaire/Agro-Ressources’ à Paris (4/11/2016)

Activités éditoriales
Évaluation d’articles et d’ouvrages scientifiques (relecture d’articles / reviewing)
- Heat and Mass Transfer, Springer

Évaluation de projets de recherche
- Expert auprès de l’Agence Internationale de l’Energie, suivi et évaluation des projets financés (Bruno Lacarrière)
- Programme de recherche sur les matériaux avancés, PRIMA Quebec, 2018 (Nadine Allanic)

Évaluation de laboratoires (type Hcéres)
- Michel HAVET : Membre comité évaluation HCERES Thème de Recherche SPEE ‘Structures Procédés Ecoulement Energie' IRSTEA 18-19 octobre 2017

Responsabilités au sein d’instances d’évaluation

Activités d’expertise scientifique
Participation à des instances d’expertise (type Anses) ou de normalisation
- Expert auprès de l'Europe. Groupe de travail sur la flexibilité de la production d'énergie : ETIP-SNET : European Technology & Innovation Platforms (ETIP) - Smart Networks for Energy Transition (SNET). (Bruno Lacarrière)

Indices de reconnaissance
Prix
- Mathieu SADOT : Prix Biot-Fourier de la Société Française de Thermique (2016)

Responsabilités dans des sociétés savantes
- Michel HAVET : Membre de la commission C2 ‘Sciences et Ingénierie alimentaire’ de l’Institut International du Froid (IIF)

Invitations à des colloques / congrès à l’étranger
- Key Note Speaker : International Symposium on District Heating and Cooling, Hamburg Sept. 2018 (Bruno Lacarrière)
- Jury du 11th European PhD Workshop on Food Engineering and Technology Singen, Germany 27-28 April 2017 (Michel HAVET)

Produits destinés au grand public
Produits de vulgarisation : articles, interviews, éditions, vidéos, etc.
- Vidéo ECOTHER, 50 Ans IUT Nantes

Débats science et société
- Soirée débat auprès de l’association COBATY (Fédération Internationale de la Construction de l’Urbanisme et de l’Environnement), Nantes Nov. 2018 (Bruno Lacarrière) : La ville du futur en débat : du changement technologique à la transformation urbaine

Thèses soutenues
1. Ivan ANDRIC (SELECT+, Veolia) : The assessment of district heating potential in a context of climate change and building renovation, Directeur : P. Ferrao (40%, IST Lisbon), Co-directeur O. Le Corre (30%), Co-encadrant B. Lacarrière (30%), soutenue le 22 Septembre 2017
– Co-encadrant : A. Sarda (30%) – Co-encadrant : C. Canto (30%), soutenue le 15 février 2018

9. **Mirian Tiaki KANEIWA KUBO** (Bourse CNPq Brésil) – cotuelle Oniris / Université de Sao Paulo – Thermal process of fruit juices using microwaves : multiphysics modeling and enzyme inactivation. Directeur : L. Boillereaux (40%) – Co-encadrants : S. Curet-Ploquin (30%), Pedro Augusto (30%), soutenue le 9 novembre 2018.

HDR soutenues

- Oliver ROUAUD, Intensification des transferts en agroalimentaire : approches numérique et expérimentale, 12 décembre 2016
Equipe VERTE
« Valorisation Energie/matière des Résidus et Traitement des Emissions »

Responsable : Pascaline Pré

Co-responsable : Khaled Loubar

Présentation de l’équipe

<table>
<thead>
<tr>
<th>Chercheurs et enseignants-chercheurs permanents</th>
<th>Personnel technique (non administratif)</th>
<th>Doctorants</th>
<th>Post-Doctorants</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 dont 4 à 50%</td>
<td>8 dont 6 à 50%</td>
<td>32 (dont 19 en cours)</td>
<td>5</td>
</tr>
</tbody>
</table>

Chercheurs et enseignants-chercheurs permanents
- Yves ANDRÈS
 Professeur, HdR, IMT Atlantique (50%)
- Sary AWAD
 Maître-Assistant, IMT Atlantique
- Emna BERRICH BETOUCHE
 Maître de Conférences, Université de Nantes
- Mylène MARIN GALLEGÓ
 Maître-Assistante associée, IMT Atlantique
- Claire GÉRENTE
 Maître-Assistante, HDR, IMT Atlantique (50%)
- Lomig HAMON
 Maître-Assistant, IMT Atlantique (50%)
- Jean François LARGEAU
 Enseignant-Chercheur, ICAM
- Laurence LE COQ
 Professeur, HdR, IMT Atlantique (50%)
- Khaled LOUBAR
 Maître-Assistant, HDR, IMT Atlantique
- Pascaline PRÉ
 Professeur, HdR, IMT Atlantique
- Mohand TAZEROUT
 Professeur, HdR, IMT Atlantique
- Audrey VILLOT
 Maître-Assistante, IMT Atlantique

Personnel technique
- Katell CHAILLOU
 IR, IMT Atlantique (50%)
- François-Xavier BLANCHET
 TS, IMT Atlantique (50%)
- Yvan GOURIOU
 IR, IMT Atlantique (50%)
- Jérôme MARTIN
 TS, IMT Atlantique (50%)
- Eric CHEVREL
 TS, IMT Atlantique (50%)
- Patrick BRION
 TS, IMT Atlantique (50%)
Benoît TROUILLARD TS, IMT Atlantique (100%)

Personnels techniques non permanents
Gaëtan BURNENS Ingénieur de recherche, IMT Atlantique, 100%

Doctorants
Ayan soutenu

3. RICOUL François - Association d’un procédé de gazéification avec une pile à combustible haute température SOFC pour la production d’électricité à partir de biomasse. Soutenu le 17 octobre 2016 à l’Institut des Matériaux de Nantes. Thèse CIFRE S3D. Co-directeur de thèse : Albert Subrenat.

10. HADHOUM Loubna - Energy recovery of liquid waste from the olive industry by hydrothermal liquefaction into biofuel.

Co-directeur de thèse : Khaled Loubar. Encadrement: Mohand Tazerout

12. KASSARGY Chantal - Contribution à l'étude de la valorisation des résidus de biomasse par hydroliquéfaction : étude du procédé et amélioration de son efficacité énergétique.

Thèse en cofinancement Ademe/Région Pays de la Loire. Directrice de thèse : Claire Gérente. Endradrement : Audrey VILLOT.

En cours

23. FONGANG Blaise (10/2017) : Valorisation énergétique de résidus ligno-cellulosique Camerounnais. Thèse en co-encadrement avec l'Université de Douala (Cameroun) ; Co-financement : ICAM. Encadrement : Jean-François Largeau

Post-doctorants et chercheurs seniors accueillis

Post-doctorants

1. CAMPESI Maria-Agustina « Etablissement de la preuve de concept d’un d’échangeur-adsorbeur appliqué au captage de CO₂, du 01/06/2015 au 31/05/2016, Financement : IMT, Projet collaboratif avec l’IMT Lille Douai. Encadrants : Pascarine Pré, Lomig Hamon.

Chercheurs seniors accueillis

7. KEZRAÎNE Cheikh, Université de Djelfa, (ALGERIE), Financement : Université de Djelfa. intitulé : « Carburants alternatifs et modélisation thermodynamique de leur combustion dans les moteurs à combustion interne », du 03/05/2017 au 13/05/2017, Membre accueillant : Khaled Loubar.
8. AMOURA-LOUNI Meriem, Université des Sciences et de la Technologie Houari Boumediene, Faculté de Physique, (ALGERIE), Financement : USTBH, intitulé : « perspectives de
collaboration en lien avec les moteurs à combustion interne », du 04/12/2017 au 08/12/2017, Membre accueillant : Khaled Loubar.

11. SARVARI HORVATH Ilona, Université de Borås (SUEDE), Financement : Visiting Scholar par l’Erasmus Mundus Master Course ME3, intitulé : « mise en place d’un accord Erasmus incluant l’échange de professeurs » du 04/06/2018 au 08/06/2018, membre accueillant : Claire Gérente, Audrey Villot, Sary Awad.

Politique scientifique

Missions et objectifs scientifiques

Les activités de l’équipe VERTE s’inscrivent dans le contexte d’une contribution aux défis scientifiques et technologiques associés à la transition énergétique et au développement d’une économie circulaire. Les recherches intéressent les procédés et co-produits impliqués dans les filières de valorisation des résidus et bio-ressources. Ce champ thématique est vaste et focalise une grande intensité d’efforts de recherche aux niveaux national et international. Dans ce contexte, l’équipe VERTE se positionne à différents niveaux de la chaîne de valeur en développant son savoir-faire et ses compétences pour répondre à certaines problématiques particulières : formulation des intrants, sobriété énergétique et environnementale des procédés de transformation, conditionnement et conversion des vecteurs énergétiques (gaz et carburants liquides), caractérisation et co-valorisation de composés carbones solides en tant qu’agents réactifs de substitution. Elle se donne ainsi comme vocation de participer avec les acteurs du monde socio-économique au développement de solutions technologiques performantes et écologiques, et spécifiquement adaptées aux ressources matière disponibles sur des circuits courts. La gamme de TRL couverte s’étend de 1 à 6.
Orientations et choix stratégiques

Le projet scientifique de l’équipe VERTE est construit autour de trois thèmes principaux, qui sont « la transformation et la conversion énergétique des résidus et bioressources », « le conditionnement des gaz vecteurs et le traitement des émissions », « la caractérisation et la valorisation de matériaux carbonés issus de résidus ». Les orientations scientifiques et les enjeux pour chacun de ces sous-thèmes sont précisés ci-après :

Thème 1. «Transformation et conversion énergétique des résidus et bioressources»

Ce thème intéresse deux volets :
- d’une part les études relatives au développement de procédés de transformation adaptés aux ressources matières traitées pour la production de vecteurs énergétiques gazeux ou liquides,
- d’autre part, l’amélioration des performances énergétiques et environnementales des systèmes de conversion de combustibles issus de résidus en chaleur, électricité ou énergie motrice.

Dans le premier volet, les verrous technologiques sur lesquels les recherches se focalisent sont notamment :
- la caractérisation et la formulation des intrants : composition, mise en forme, teneur en eau admissible, préparation en mélanges;
- le choix du mode de transformation : pyrolyse, gazéification, liquéfaction hydrothermale, transestérification, réaction biologique;
- la conception technologique et l’ajustement des paramètres opérateurs des procédés permettant d’atteindre les performances attendues, notamment en termes de rendement matière et de qualité des produits générés.
- l’amélioration de la sobriété énergétique et environnementale de ces procédés par la minimisation des consommations énergétiques et de l’impact carbone, ainsi que par le contrôle des rejets polluants et émissions de GES à l’atmosphère.

Dans le second volet, les recherches menées s’attachent plus particulièrement à étudier les performances des systèmes de conversion en lien avec la nature et la composition des combustibles. Les combustibles investigués sont notamment issus de procédés de transformation primaires de résidus, et ont été éventuellement « up-gradés » par des post-traitements secondaires destinés à augmenter leur valeur énergétique et leurs performances environnementales grâce à l’abaissement de la teneur en composés indésirables et l’amélioration de leurs propriétés physico-chimiques. Les travaux sur ce second volet se rapportent ainsi à la caractérisation de la qualité de la combustion de carburants solides, liquides ou gazeux. Les systèmes de conversion concernés
sont notamment les moteurs à combustion interne, les chaudières et micro turbines. L’augmentation du rendement énergétique et l’abaissement des niveaux d’émissions polluantes sont les objectifs recherchés au travers de ces études. L’enrichissement et la purification des vecteurs énergétiques en phase gaz, ainsi que les traitements d’émissions post-combustion font plus spécifiquement l’objet de travaux affichés dans le thème 2.

Les verrous scientifiques dans ce Thème 1 se situent d’abord au niveau de la compréhension des mécanismes réactionnels impliqués dans les différentes voies de transformations appliquées aux résidus et bio-ressources. Une grande partie des efforts est consacrée aux études réactionnelles mises en jeu dans les voies de transformation thermo chimique, mais d’autres voies (biologiques et catalytiques) sont par ailleurs explorées. Ces études réactionnelles sont associées à l’élaboration de modèles cinétiques représentatifs de la formation des molécules d’intérêt et co-composés secondaires. Des approches de modélisation phénoménologique des réacteurs intégrant ces nouveaux modèles cinétiques sont proposées afin de fournir une base théorique aux études de dimensionnement des équipements et d’optimisation des paramètres opératoires.

Thème 2. « Conditionnement des gaz vecteurs et traitement des émissions »

Dans ce thème, les études portent sur la définition et la mise en œuvre des opérations unitaires et des chaînes de procédés appliquées au conditionnement des gaz vecteurs (purification et stockage) et à l’épuration des émissions atmosphériques issues des filières de transformation par voies thermo chimiques (combustion, pyrolyse, gazéification) ou biologiques des résidus.

Les phases gazeuses à séparer sont :
- soit des biogaz ou gaz de synthèse riches en hydrogène ou méthane, qu’il s’agit d’épurer en vue d’ajuster la concentration des constituants aux spécifications requises pour produire un vecteur énergétique propre,
- soit des effluents gazeux chargés en particules (suies, goudrons,…), composés polluants (COV, NOx…) ou GES (captage CO₂). Ces composés sont captés dans un but premier de préservation environnementale, mais peuvent aussi éventuellement être extraits pour être concentrés et employés comme substituts de matières premières (recyclage de solvants, production de méthane de synthèse).

Le stockage intéresse plus particulièrement la concentration en phase solide des vecteurs énergétiques (hydrogène ou méthane purifiés) dans des réservoirs, en vue de leur transport ou de leur conversion sur des systèmes stationnaires ou embarqués. Les systèmes impliquant la compression d’air et sa détente par turbine sont par ailleurs examinés en tant que mode alternatif de stockage d’énergie via un vecteur gazeux.

Les technologies étudiées pour la séparation des gaz ou leur stockage en phase solide sont des procédés opérant par adsorption ou absorption, et nécessitant une régénération de l’agent actif par modulation en température et/ou pression. Les procédés de captage associés à la dégradation des composés polluants gazeux ou particulaires dans les émissions mettent en œuvre des systèmes catalytiques déposés ou non sur médias poreux.

Les problématiques adressées portent sur les aspects suivants :
- La caractérisation des propriétés fonctionnelles de nouveaux agents actifs pour les applications de séparation, épuration ou stockage (en voie solide) de gaz :
 - en phase solide: matériaux microporeux adsorbants ou absorbants, avec une attention particulière portée aux matériaux hybrides (MOFs-carbone) ou carbonés issus de mélanges composites de résidus, phases catalytiques déposées sur modules de filtration particulaires.

- La description multi-échelle (grain-procédé) des phénomènes par la modélisation des mécanismes de transferts matière-chaleur et de réactions. Dans le cas de la mise en œuvre de phase solides microporeuses, les mécanismes de transfert diffusionnels intraparticulaires à l’échelle du grain sont limitants et nécessitent d’être pris en compte à l’échelle du procédé.

- La mise en œuvre des technologies de traitement et leur adaptation aux effluents à traiter : l’objectif des études est alors la préconisation opératoire et la validation technologique préindustrielle considérant l’intégration et l’ordonnancement des briques technologiques intervenant en post-traitement de la filière de transformation des résidus.

- La compréhension des mécanismes de formation des suies et craquage des goudrons, associée à leur caractérisation microstructurale et physico-chimique. Les connaissances à caractère fondamental auxquelles contribuent ces travaux participent au développement de technologies à émissions mieux contrôlées.

- L’intensification des procédés d’adsorption ou d’absorption opérant en modulation de température pour la régénération thermique de l’agent actif. Les enjeux sur lesquels se positionnent les travaux menés sont la réduction de la forte pénalité énergétique induite par la régénération thermique du solvant ou du matériau adsorbant, combinée à une amélioration de la compacité des équipements. De nouveaux designs de procédés sont ainsi proposés et examinés au travers d’études associant expérimentation sur prototype de laboratoire et modélisation-simulation des systèmes.

- L’amélioration du rendement de conversion des systèmes de stockage associée à la récupération de chaleur (compression d’air, méthanisation) sur des unités décentralisées.

Thème 3. « Caractérisation et valorisation de matériaux carbonés issus de résidus »

Ce thème intéresse la caractérisation et la valorisation matière de composés carbonés produits par transformation thermochimique de résidus, celle-ci étant éventuellement combinée à une valorisation énergétique par production de gaz de synthèse. Les composés étudiés constituent des carbonisats « chars » issus de procédés de pyro-gazéification, contenant des matières minérales susceptibles de leur conférer une réactivité catalytique ou chimique vis-à-vis de traitements en phase gaz (craquage de goudrons, élimination d’H₂S), et/ou ce sont des charbons activés ayant subi des traitements supplémentaires d’oxydation partielle favorables au développement de la porosité interne des particules.

Les axes de recherche sur lesquels sont menés ces travaux adressent notamment les problématiques de synthèse et de caractérisation de ces composés carbonés en lien avec des applications environnementales de traitement d’effluents, ce qui constitue une activité historique du laboratoire, mais aussi pour des activités plus récentes, en lien avec la conversion d’énergie (purification de gaz de synthèse, composants d’électrodes de batteries).

L’activité de recherche dans ce thème se structure autour des axes suivants :

- Caractérisation structurale-texturale de composés réactifs/adsorbants carbonés : les chars et charbons activés étudiés présentent une microstructure complexe qui résulte de leurs hétérogénéités chimiques associées au caractère défectueux et à l’arrangement désordonné des fragments graphéniques qui les constituent. Or, les méthodes conventionnelles de physisorption desquelles sont déduites les informations texturales permettant de quantifier
la micro-mésoporosité des carbone s'appuient sur des modèles très simplifiés et chimiquement homogène des structures, supposant des géométries régulières de pores, qui sont loin de donner une représentation satisfaisante de leur complexité structurale. Les recherches conduites sur cet axe s’attachent donc à analyser finement les propriétés structurales-texturales des matériaux carbonés désordonnés par le développement des méthodes de caractérisation et par leur couplage (imagerie TEM, spectrométrie Raman, fluorescence et diffraction de rayons X…).

- Compréhension des relations structure-propriétés des composés carbonés réactifs/adsorbants : les informations structurales-texturales déduites des études précédentes sont associées à l’étude des propriétés fonctionnelles des matériaux suivant l’application visée. Pour des traitements d’épuration ou d’enrichissement en phase gaz, les approches méthodologiques sont celles décrites dans le thème 2 et reposent sur des mesures de réactivité et de propriétés de sorption. Les matériaux produits peuvent aussi être étudiés pour des applications d’épuration relevant des thématiques de l’équipe TEAM. Les travaux tendent à expliciter les relations entre données structurales et texturales collectées pour les composés carbonés préparés à partir de résidus et les mécanismes réactionnels et paramètres des modèles cinétiques (coefficients de diffusion effectifs) et d’équilibre (isothermes d’adsorption de composés cibles purs ou en mélange).

- Formulation des conditions de synthèse en lien avec la nature des résidus : les travaux menés visent à expliquer l’influence des conditions de carbonisation, d’activation et de fonctionnalisation des résidus sur les propriétés intrinsèques et fonctionnelles des composés carbonés produits. La formulation des conditions de préparation non seulement prend en compte la qualité du produit généré fonction de l’utilisation visée, mais également le rendement matérier et le bilan énergétique global du procédé d’élaboration. Afin d’améliorer ce bilan, les données technico-économiques des filières de co-valorisation matière-énergie des résidus intégrant la production et l’utilisation in-situ de chars en post traitement de gaz de synthèse sont examinées.
Analyse SWOT

Forces

- Bonne adhésion des personnels au projet d’équipe, avec un fort dynamisme dans l’activité de recherche contractuelle et collaborative. Près de la moitié des membres permanents sont des chercheurs séniors contribuant au développement d’expertise dans chaque sous thème et à une reconnaissance de compétences multidisciplinaires.
- L’équipe possède des moyens expérimentaux dédiés importants et de très bon niveau par rapport à l’état de l’art, notamment au travers de la plateforme PREVER qui héberge plusieurs pilotes semi-industriels de transformation et conversion de résidus, et rassemble de nombreux équipements d’analyse et de caractérisation des produits.
- Elle a la capacité de participer à des projets intégrateurs ambitieux mobilisant des compétences scientifiques diversifiées tant sur les aspects procédés que caractérisation des produits au différents étages des filières technologiques.
- Les compétences transverses acquises ou développées dans la caractérisation des produits (chars, huiles, gaz…) associée à leur usage et conditions d’élaboration sont un atout différentiant pour répondre aux problématiques de développement technologique.

Faiblesses

- L’effectif de l’équipe reste relativement modeste au regard de son périmètre avec environ un tiers des EC permanents impliqués à un taux partiel de 50% d’activité de recherche dans l’équipe.
- Sa visibilité scientifique doit être confortée auprès des instances de gouvernance de la Recherche et du Développement, notamment celles régionales (Ademe, Pôles de compétitivité, Région PdL), ainsi qu’auprès des organisations professionnelles du domaine (ANCRE, ...).

Opportunités

- L’équipe a la capacité de mener des travaux sur une plage de TRL de 1 à 6 et au périmètre filière. L’évolution des réglementations et les mécanismes économiques incitatifs en faveur de la transition écologique génèrent par ailleurs des besoins pour les entreprises et des opportunités de développement de marchés favorables à l’accompagnement de projets R&D relevant du champ thématique de l’équipe. Son activité allie la production de connaissances basées sur l’expérimentation à des approches de modélisation phénoménologiques, le développement de technologies innovantes, ainsi que le service et le conseil rendus auprès d’entreprises de typologie variée et dont les activités se situent notamment au niveau de :
 - la transformation de matières premières et produits agricoles,
 - l’ingénierie et la fabrication d’équipements pour l’industrie manufacturière et la production décentralisée d’énergie: unités de séparation et transformation de matières, moteurs, turbine, échangeurs de chaleurs, séchoirs, fours, etc.
 - la production, le transport, le stockage et la distribution de vecteurs énergétiques…
- L’implication des chercheurs de l’équipe dans le portage de projets scientifiques et collaboratifs structurants du département Énergétique et Génie des Procédés, de l’Institut Carnot Mines, ainsi que le soutien dans la prospection commerciale amené par les chargés d’affaires du programme de filière ANR EnergICs participent à améliorer la visibilité de l’équipe au niveau national et à dynamiser son activité contractuelle auprès des entreprises, notamment celles du grand Ouest.
- L’incubateur d’IMT Atlantique offre des opportunités d’accompagnement par la recherche à la création d’entreprises concernées par les filières de conversion des résidus et bio-ressources.
- Par ailleurs, il importe de mettre en relief et renforcer un positionnement différencié des expertises scientifiques de l’équipe par rapport à la recherche nationale, voire internationale dans le domaine. Les orientations des recherches qu’il s’agit plus spécifiquement de renforcer sont en particulier :
 - la sobriété énergétique et environnementale des filières de valorisation des résidus et bio-ressources,
 - l’amélioration des procédés de conditionnement des gaz vecteurs d’énergie dans les étapes de séparation et stockage,
 - la valorisation conjointe matière - énergie des résidus et bioressources.

Menaces
- La stratégie adoptée depuis plusieurs années en France et en Europe est de plus en plus incitative envers les partenariats engageant des entreprises. L’aide de l’Etat au financement de la Recherche cible majoritairement des travaux offrant une perspective de transfert à moyen terme. Dans ce contexte, l’orientation de la recherche au laboratoire se trouve fortement contrainte par la mobilisation des moyens sur des projets à faible risque ou à faible enjeu scientifique.
- L’offre de nationale de compétences R&D des laboratoires universitaires et CNRS apparaît foisonnante et disséminée sur l’ensemble du territoire. Par ailleurs, le CEA-LITEN mobilise des moyens humains et d’équipements conséquents sur la thématique au travers notamment de sa plateforme « Bio-ressources ». Dans ce contexte fortement concurrentiel au regard des réponses aux appels d’offres ou appels à projets, l’équipe doit maintenir ses efforts de rayonnement scientifique à l’international, ainsi qu’une position thématique de leadership au niveau régional, en tenant compte des spécificités de l’activité économique de son territoire.

Bilan général d’activité et faits marquants de la période 2016-2018

Bilan général d’activité de l’équipe

Lors de la période 2016-18, l’équipe a maintenu une activité soutenue dans chaque thème, tandis que des projets donnant une cohésion d’ensemble aux compétences multidisciplinaires de l’équipe se sont mis en place.

Dans le thème 1, les efforts de recherche ont porté notamment sur :
- L’évaluation et l’optimisation des performances de combustion de carburants alternatifs dans les moteurs à combustion interne (bio-carburants, mélanges H₂-gaz naturel et H₂-biogaz opérant en mode dual fuel). Ces travaux sont supportés par le développement de modèles de simulation aptes à rendre compte de certains paramètres de performance des moteurs (puissance et rendement). Ils ont amené une activité contractuelle avec des entreprises implantées en région ligérienne (Brangeon, Algosource).
L’optimisation des paramètres opératoires des procédés de transformation de résidus lignocellulosiques secs ou humides, par pyrolyse ou gazéification en lit fixe et par hydroliquéfaction.

Dans le thème 2, l’activité de recherche contractuelle et académique s’est fortement développée sur la problématique de traitement par des procédés catalytiques hétérogènes de composés polluants (goudrons, H₂S, NOx…) présents dans les gaz issus de procédés de thermoconversion.

Les études ont porté par exemple sur l’intégration de technologies de traitement in-situ des gaz de synthèse par recyclage des chars (activés ou fonctionnalisés) au niveau des unités de post traitement, ainsi que sur la mise en œuvre de procédés thermo-catalytiques couplant aux réactions de carbonisation/gazéification des résidus le craquage thermique des émissions de goudrons. Les voies de valorisation des chars les plus prometteuses ont été évaluées à partir de bilans globaux de matière et énergie (projet CHARPURGAZ).

Les travaux ont aussi concerné, dans le cadre de projets collaboratifs avec des partenaires industriels (projets F3, NANOWET), des procédés de filtration catalytiques ou de lavage pour le co-traitement gaz-(nano) particules de fumées de combustion. Outre la caractérisation des performances en terme d’abattement des composés polluants traités, ces recherches ont visé à expliquer les mécanismes réactionnels impliqués, à caractériser les produits de dégradation et leur éventuelle toxicité, et proposent au travers des modèles phénoménologiques développés des outils d’aide au dimensionnement des systèmes.

Par ailleurs, l’intensification de procédés de séparation modulée température reposant sur une nouvelle conception de contacteur-échangeur de chaleur a été explorée dans le cadre d’un projet en collaboration avec le Département Énergétique Industrielle de l’IMT Lille Douai. Les résultats préliminaires obtenus permettent d’envisager une perspective de continuité à moyen terme de ces travaux dans le cadre d’une thèse en co-tutelle.

Enfin dans le thème 3, les travaux menés ont permis de renforcer et valoriser les compétences de l’équipe dans le domaine de la caractérisation structurale et physico-chimique des composés carbonés (chars, carbones activés, suie…). Cette reconnaissance d’expertise s’est traduite par plusieurs collaborations académiques en France et à l’international sur le sujet, et par des conférences invitées

Faits marquants de la période 2016 -2018

Mise en place de nouvelles collaborations académiques internationales avec :

- **l’Université de Borås** (Suède) : visite du Pr. Sarvari Horvath du 4 au 8 juin 2018. Discussions scientifiques et construction d’un accord Erasmus incluant les activités de recherche et l’échange de professeurs pour soutenir la collaboration avec A. Villot, C. Gérente Y. Andrès. Audrey Villot a répondu à l’appel à candidature de l’Institut Français (programme TOR) afin de pouvoir à son tour se déplacer à Borås (Suède) en 2019.

- la Fachhochschule de Münster, University of Applied Sciences, (Allemagne) : visite de Pascaline Pré au département Chemieingenieurwesen du 27 au 31 mars 2017: montage projet ANR- PCRI.
- la Faculté de Génie des Procédés, Université Salah Boubnider Constantine (Algérie) : démarrage d’une thèse en co-encadrement (K. Loubar) en décembre 2018 : formulation des mélanges carburants-biocarburants.

Mise en place de nouvelles collaborations avec des entreprises ou EPIC :

- La société DACARB (2016) « Activation de charbons de bois d’Eucalyptus et tests d’adsorption en phase aqueuse ». Claire Gérente.
- La société Athena, incubateur IMT Atlantique (2017-2019): « Production d'hydrocarbures par fermentation d'acide gras par une souche bactérienne du genre Clostridium ». Accompagnement à la création d’entreprise, Yves Andres.

Participation dans des réseaux et sociétés savantes :

- GDR Suie (depuis 2015) : participations au s de plénière annuelles et intervention dans l’Ecole thématique « La suie, formation, caractérisation et conséquences » (05/2017).
- GDR ThermoBio (depuis 2018) : participation à la première réunion annuelle et présentation des activités de l’équipe VERTE (09/2018)
- GIS PERLE, Mohand Tazerout et Khaled Loubar sont responsables de l’Axe Bioénergies.
Montage de projets Européens:

- **Programme ERA-NET FACCE SURPLUS : Projet HALOSYS** (2018-2021) : Collaboration entre IMT Atlantique (France), National Institute of Research and Development for Biological Sciences (Roumanie), University of Agronomic Sciences and Veterinary Medicine of Bucharest (Roumanie), Instytut Włókien Naturalnych i Roślin Zielarskich (Pologne), BIOTEN Ltd. (Pologne), la société S3D (France).

- **Programme H2020 PRIMA** Partnership for Research and Innovation in the Mediterranean Area : Projet ACWaTreat : Coordination montage projet : Sary Awad, IMT Atlantique (France). Partenaire : SACMO (France), URV (Espagne), Università degli Studi della Basilicata (Italie), UMBB (Algérie), RLEST (Tunisie). Non financé.

- **Programme H2020 : Projet Sewage Fuel**. Coordination montage du projet: Sary AWAD, IMT Atlantique (France). Partenaires: SACMO (France), URV (Espagne), UPB (Roumanie), UPG (Roumanie), MedGreen Cluster (Roumanie), ETA (Italie), CTMV (France), EDAR (Espagne). Non financé.

Recrutements et nouvelles arrivées : Arrivée dans l’équipe de Mylène Marin Gallego en tant que Maître Assistante associée (depuis 09/2016).

Perspectives de l’équipe

- Dans la continuité des orientations actuelles, les efforts de recherche vont se poursuivre notamment sur les aspects qui concernent la **sobriété énergétique et environnementale des filières de valorisation des résidus**. En particulier, une attention sera portée à la mise en œuvre de technologies plus efficaces d’un point de vue de la gestion ou de l’intensification des transferts thermiques et/ou utilisant une source de chaleur décarbonée. L’amélioration des performances des procédés de conversion thermochnimique de résidus repose en effet sur la définition de configurations technologiques des réacteurs induisant des vitesses de transferts de chaleur rapides et des distributions de champs de température contrôlés dans tout le volume réactionnel. La régénération thermique des phases réactives dans les procédés de séparation par sorption est aussi souvent fortement pénalisante d’un point de vue énergétique. Les recherches envisagées pourront ainsi prendre en compte l’étude de modes de chauffage récupérateifs (auto-thermie) ou des modes de chauffage non conventionnels et susceptibles d’être produits à partir d’énergies renouvelables.

 => Développer les études portant sur la conception des **contacteurs-échangeurs de chaleur pour l’intensification des transferts thermiques dans les réacteurs hétérogènes**, partant de la preuve de concept pour aller jusqu’au prototype de laboratoire.

 => Démarrer des travaux en lien avec la mise en œuvre de technologies de traitement thermique par micro-ondes dans les procédés de transformation thermochnimique des résidus et dans les procédés séparatifs modulés en température (régénération thermique de solvants, d’adsorbants...).

Ces études nécessitent le développement d’outils de modélisation pour décrire les phénomènes locaux de transferts-réactions dans les procédés, et auquel peuvent être associées les compétences de l’équipe OSE. Un projet de thèse CIFRE financé par la société
SAIREM, leader mondial dans la fourniture d’équipements micro-ondes industriels, et associant OSE et VERTE est ainsi actuellement envisagé.

- **Continuer à développer les recherches relatives à la valorisation conjointe (matière et énergie) de biomasse**, pour l’élaboration de carbons actifs à faible impact environnemental à une échelle compatible avec la mise en œuvre dans des procédés de traitement d’émissions gazeuses, et en se rapprochant de conditions réelles du point de vue des gaz à traiter comme des matériaux à étudier. Une collaboration avec l’université de Bozen-Bolzano (Italie) est engagée pour étudier des chars de gazéification industrielle et étendre leurs valorisations à des procédés de traitement d’eaux. La complexité des matrices gazeuses étudiées dans le craquage catalytique des goudrons s’étant intensifiée avec la thèse de Jenny Pena Badillo (2018), les études à venir prendront en compte des mélanges plus complexes de goudrons et l’identification de leurs sous-produits de réaction.

- **Compléter les compétences associées à la production des composés carbonés en y associant la mise en forme des poudres et la formulation de matériaux de type extrudés, monolithes.** On constate en effet peu de littérature ouverte sur ce sujet et une recherche académique peu présente en France voire même en Europe, or ce maillon est nécessaire pour réaliser le changement d’échelle de la particule au procédé. La préparation d’extrudés de carbone activé issus de la valorisation de pneus usagés par compression mécanique sera par exemple examinée dans la thèse Hiba AOULED MHEMED démarrée en décembre 2017. Une collaboration avec la Fachhochschule de Münster (Allemagne) est aussi envisagée pour étudier la préparation de media adsorbants carbonés consolidés dans des lits structurés (projet ANR PCRI soumis en 2018).

- **Etendre avec le soutien de collaborations académiques, le champ applicatif d’études des composés carbonés au domaine du stockage d’énergie (super condensateur, anode de batterie).** Une collaboration avec l’Université d’Utrecht (Allemagne) a abouti par exemple en 2016 à une publication portant sur la caractérisation de carbones dédiés à ce type d’application (Oschatz, Pré et al., Carbon, 2016).

- **Accompagner les études de développement de la plateforme de démonstration Power to Gaz « Minerve », installée sur le site de la Chantrerie.** Des campagnes d’essais, complétées par le développement d’un modèle de simulation de l’unité, sont envisagées dans le cadre d’un contrat post-doctoral d’un an qui a débuté en novembre 2018 (financement AFUL Chantrerie).

- **Maintenir l’activité contractuelle pour assurer la maintenance ou le renouvellement du parc d’équipement de la plateforme PREVER.**

- **Poursuivre les travaux à l’interface avec TEAM sur des applications de traitement eau-air à partir de composés carbonés**
Produits et activités de recherche

Période de référence : 2016-2018
Equipe VERTE

Journaux / Revues
Articles scientifiques
2018

Ouvrages

Chapitres d’ouvrage
2018

Colloques / congrès, séminaires de recherche

Articles publiés dans des actes de colloques / congrès
2018

20. Kassargy C., Awad S., Burnens G., Kahine K. Tazerout M., Catalytic degradation of polyethylene and polypropylene wastes over USY zeolite into gasoline and diesel-like fuels, 7th International Conference on Engineering for Waste and Biomass Valorisation,, Prague, Czech Republic, July 2-5, 2018

21. Elamine Kadi M., Loubar K., SARY Awad S., Tazerout M., Purification of biodiesel by the use of a stacked bed of sawdust and ion exchange resin, 7th International Conference on Engineering for Waste and Biomass Valorisation,, Prague, Czech Republic, July 2-5, 2018

22. Youghourta Zerdane, Madjid Hachemi, Jean-François Largeau, Mohand Tazerout, Caractérisation de l’huile usagée et possibilité de récupération, International Conference on Advanced Mechanics and Renewable Energies (ICMARE2018), November 28 & 29, Boumerdes, Algeria, 2018

23. Ahmed Wharhani Khirech, Jean-François Largeau, Mohand Tazerout, Energy Valorisation of Grasses by Dry Process, 7th International Conference on Engineering for Waste and Biomass Valorisation, Prague, Czech Republic, July 2-5, 2018

2017

181

56. R. Alloune, S. Awad, K. Loubar, M. Balistrou, M. Tazerout, Biodiesel production by citrullus coloquintidis for internal combustion engines, 9th International Conference on Thermal Engineering, March 24 to March 26, 2016, Abu Dhabi, UAE

Contrats de recherche financés par des institutions publiques ou caritatives

Contrats européens (ERC, H2020, etc.) et internationaux

- Programme ERA-NET FACCE SURPLUS: Projet HALOSYS “Integrated system of bioremediation : biorefining using halophyte species”. 2018-2021. Programme ERA-NET FACCE SURPLUS Sustainable and Resilient agriculture for food and non-food systems. IMT Atlantique (France), National Institute of Research and Development for Biological Sciences (Roumanie), University of Agronomic Sciences and Veterinary Medicine of Bucharest (Roumanie), Instytut Włókien Naturalnych i Roślin Zielarskich (Pologne), BIOTEN Ltd. (Pologne), S3D (France).

Contrats nationaux

Contrats avec les collectivités territoriales

Contrats financés dans le cadre du PIA

Contrats financés par des associations caritatives et des fondations (ARC, FMR, FRM, etc.)

Interactions avec les acteurs socio-économiques

Contrats de R&D avec des industriels

Voir p15 : Mise en place de nouvelles collaborations avec des entreprises ou EPIC.

Organisation de colloques / congrès
- Participation à l’organisation des Ecoles de l’AFA, P.Pré.

Activités d’évaluation

Évaluation de laboratoires (type Hcéres)
Indices de reconnaissance

Responsabilités dans des sociétés savantes

Invitations à des colloques / congrès à l’étranger

Séjours dans des laboratoires étrangers

- Fachhochschule de Münster, University of Applied Sciences, (Allemagne) département Chemieingenieurwesen du 27/03/2017 au 31/03/2017, (Pré P).
- Visiting Professor at Universitas Indonesia World Class Professor Program du 30/09/2017 au 14/10/2017 (Awad S et Andres Y.)

Thèses soutenues

3. RICOUL François - Association d’un procédé de gazéification avec une pile à combustible haute température SOFC pour la production d’électricité à partir de biomasse. Soutenue le 17 octobre 2016 à l’Institut des Matériaux de Nantes. Thèse CIFRE S3D. Co-directeur de thèse : Albert Subrenat.
6. BOUDHAN Rachid - Filtration de nanoparticules issues de la combustion/incinération de déchets industriels.

7. ALLOUNE Rhiad - Contribution à la mise au point d’un combustible innovant à base de culture locale non alimentaire pour les moteurs à combustion interne.

9. TCIOCAN Alexandru - Contributions aux systèmes de stockage d’énergie en utilisant des systèmes hybrides à partir de sources d’énergie alternatives.

10. HADHOUM Loubna - Energy recovery of liquid waste from the olive industry by hydrothermal liquefaction into biofuel.

Co-directeur de thèse : Khaled Loubar. Encadrement: Mohand Tazerout

12. KASSARGY Chantal - Contribution à l’étude de la valorisation des résidus de biomasse par hydroliquéfaction : étude du procédé et amélioration de son efficacité énergétique énergétique.

HDR soutenues
- GERENETTE Claire - Développement d’adsorbants à faible impact environnemental et réutilisation d’eaux usées traitées pour la préservation des ressources. Soutenue le 27 juin 2016.